136 0

Compensatory changes in the ubiquitin-proteasome system, brain-derived neurotrophic factor and mitochondrial complex II/III in YAC72 and R6/2 transgenic mice partially model Huntington's disease patients

Title
Compensatory changes in the ubiquitin-proteasome system, brain-derived neurotrophic factor and mitochondrial complex II/III in YAC72 and R6/2 transgenic mice partially model Huntington's disease patients
Author
서혜명
Issue Date
2008-10
Publisher
Oxford University Press
Citation
Human Molecular Genetics, v. 17, NO. 20, Page. 3144-3153
Abstract
Intraneuronal protein aggregates of the mutated huntingtin in Huntington's disease (HD) brains suggest an overload and/or dysfunction of the ubiquitin-proteasome system (UPS). There is a general inhibition of the UPS in many brain regions (cerebellum, cortex, substantia nigra and caudate-putamen) and skin fibroblasts from HD patients. In the current experiment, the widely used mutant huntingtin-exon 1 CAG repeat HD transgenic mice model (R6/2) (with 144 CAG repeat and exon 1) during late-stage pathology, had increases in proteasome activity in the striatum. However, this discrepancy with HD patient tissue was not apparent in the mutant CAG repeat huntingtin full-length HD (YAC72) transgenic mouse model during post-symptomatic and late-stage pathology, which then also showed UPS inhibition similar to HD patients' brains. In both types of HD model mice, we determined biochemical changes, including expression of brain-derived neurotrophic factor (BDNF) and mitochondrial complex II/III (MCII/III) activities related to HD pathology. We found increases of both BDNF expression, and MCII/III activities in YAC72 transgenic mice, and no change of BDNF expression in R6/2 mice. Our data show that extreme CAG repeat lengths in R6/2 mice is paradoxically associated with increased proteasome activity, probably as a cellular compensatory biochemical change in response to the underlying mutation. Changes in HD patients for UPS function, BDNF expression and MCII/III activity are only partially modeled in R6/2 and YAC72 mice, with the latter at 16 months of age being most congruent with the human disease.
URI
https://academic.oup.com/hmg/article/17/20/3144/593977https://repository.hanyang.ac.kr/handle/20.500.11754/184282
ISSN
0964-6906;1460-2083
DOI
10.1093/hmg/ddn211
Appears in Collections:
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY[E](과학기술융합대학) > ETC
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE