82 0

Efficiency and Robustness of Fully Adaptive Simulated Maximum Likelihood Method

Title
Efficiency and Robustness of Fully Adaptive Simulated Maximum Likelihood Method
Author
김대경
Keywords
Monte Carlo; importance sampling; marginal likelihood; missing
Issue Date
2009-05
Publisher
한국통계학회
Citation
Communications for Statistical Applications and Methods, v. 16, NO. 3, Page. 479-485
Abstract
When a part of data is unobserved the marginal likelihood of parameters given the observed data often involves analytically intractable high dimensional integral and hence it is hard to find the maximum likelihood estimate of the parameters. Simulated maximum likelihood(SML) method which estimates the marginal likelihood via Monte Carlo importance sampling and optimize the estimated marginal likelihood has been used in many applications. A key issue in SML is to find a good proposal density from which Monte Carlo samples are generated. The optimal proposal density is the conditional density of the unobserved data given the parameters and the observed data, and attempts have been given to find a good approximation to the optimal proposal density. Algorithms which adaptively improve the proposal density have been widely used due to its simplicity and efficiency. In this paper, we describe a fully adaptive algorithm which has been used by some practitioners but has not been well recognized in statistical literature, and evaluate its estimation performance and robustness via a simulation study. The simulation study shows a great improvement in the order of magnitudes in the mean squared error, compared to non-adaptive or partially adaptive SML methods. Also, it is shown that the fully adaptive SML is robust in a sense that it is insensitive to the starting points in the optimization routine.
URI
https://kiss.kstudy.com/thesis/thesis-view.asp?key=2776581https://repository.hanyang.ac.kr/handle/20.500.11754/183950
ISSN
2287-7843
Appears in Collections:
COLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY[E](과학기술융합대학) > ETC
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE