137 0

Full metadata record

DC FieldValueLanguage
dc.contributor.authorManwar Hussain-
dc.date.accessioned2022-12-27T05:20:50Z-
dc.date.available2022-12-27T05:20:50Z-
dc.date.issued2019-02-
dc.identifier.citationJournal of Materials Science, v. 54.0, NO. 4.0, Page. 3156-3173-
dc.identifier.issn0022-2461;1573-4803-
dc.identifier.urihttps://link.springer.com/article/10.1007%2Fs10853-018-3043-4en_US
dc.identifier.urihttps://repository.hanyang.ac.kr/handle/20.500.11754/178469-
dc.description.abstractWe report a novel approach to the fabrication of polypyrrole/reduced graphene oxide/carbon nanotube (PPy/rGO/CNT) composites. Firstly, the growth of carbon nanotube (CNT) and the partial reduction of graphene oxide occurred simultaneously within 10s under ambient conditions using a microwave-assisted approach. Polypyrrole (PPy) was then integrated with reduced graphene oxide/carbon nanotube (rGO/CNT) hybrid materials through in situ oxidative polymerization of pyrrole in the presence of dodecylbenzenesulfonic acid, which acts as a stabilizing and doping agent. The morphological, structural, electrical, and thermal properties of PPy/rGO/CNT composites are discussed in detail, and a possible formation mechanism is proposed. The results indicate that introducing rGO/CNT into the PPy polymer can improve both the thermal and electrical properties of the polymer. Enhanced conductivity of 1214.16S/m was observed in the sample with 5wt% rGO/CNT loading with a pressing pressure of 10MPa compared to that in individual PPy and PPy/GO samples pressed at the same pressing pressure. This study provides a simple approach to the preparation of PPy/rGO/CNT composites with tunable electrical properties for a variety of potential electronic applications.-
dc.description.sponsorshipThis work was supported by the Human Resources Development program (No. 20154030200680) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Ministry of Trade, Industry and Energy, Korea.-
dc.languageen-
dc.publisherKluwer Academic Publishers-
dc.subjectPress Pressure-
dc.subjectDodecylbenzenesulfonic Acid (DBSA)-
dc.subjectPotential Electronic Applications-
dc.subjectHybrid Materials-
dc.subjectGraphene Oxide Carbon Nanotube (GO/CNT)-
dc.titleElectroconductive performance of polypyrrole/reduced graphene oxide/carbon nanotube composites synthesized via in situ oxidative polymerization-
dc.typeArticle-
dc.relation.no4.0-
dc.relation.volume54.0-
dc.identifier.doi10.1007/s10853-018-3043-4-
dc.relation.page3156-3173-
dc.relation.journalJournal of Materials Science-
dc.contributor.googleauthorXuan Tin Tran-
dc.contributor.googleauthorPark, Sung Soo-
dc.contributor.googleauthorSong, Sinae-
dc.contributor.googleauthorHaider, Muhammad Salman-
dc.contributor.googleauthorImran, Syed Muhammad-
dc.contributor.googleauthorHussain, Manwar-
dc.contributor.googleauthorKim, Hee Taik-
dc.sector.campusE-
dc.sector.daehak공학대학-
dc.sector.department재료화학공학과-
dc.identifier.pidmanwarh-
Appears in Collections:
COLLEGE OF ENGINEERING SCIENCES[E](공학대학) > MATERIALS SCIENCE AND CHEMICAL ENGINEERING(재료화학공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE