307 0

Open-source and do-it-yourself microfluidics

Title
Open-source and do-it-yourself microfluidics
Author
최성용
Keywords
Microfluidics; Do-it-yourself; Open-source; Microfluidic devices; Microfluidics operating equipment
Issue Date
2021-11
Publisher
ELSEVIER SCIENCE SA
Citation
SENSORS AND ACTUATORS B-CHEMICAL, v. 347, article no. 130624, Page. 1-18
Abstract
The field of microfluidics has progressed rapidly over the last few decades as an essential tool in many areas of experimental research that involve tiny liquid volumes. However, the fast-growing field relies heavily on specialized fabrication facilities and research equipment, which limits the active participation of researchers and beginners outside microfluidics. With the growing paradigm on do-it-yourself (DIY) biology and open-source (OS) hardware, there are many efforts to create microfluidic products by using publicly-shared or easy-to-use principles. Although this approach to technology innovation has already been initiated in the field of microfluidics, the literature on OS and DIY microfluidics is still disseminated in individual journals. In this review, we provide an overview of OS and DIY microfluidics and related technologies, in particular, how microfluidic devices can be fabricated without specialized manufacturing equipment and microfabrication facilities, and how laboratory equipment that is required to perform microfluidics research can be recreated to be affordable and customizable without specialized expertise. Thus, this review introduces subtractive and additive micromachining technologies such as laser cutting, milling, and 3D printing that are accessible even to beginners, and compare their pros and cons for microfabrication. Then, OS and DIY instruments essential for operation of microfluidic devices including precision pumps, microscopes, and centrifuges are reviewed. We discuss the challenges associated with the more-accessible, wide-spread use of microfluidics as well as potential strategies to address these challenges, which can lead to individual- and community-driven microfluidics innovation.
URI
https://www.sciencedirect.com/science/article/pii/S0925400521011928?via%3Dihubhttps://repository.hanyang.ac.kr/handle/20.500.11754/178059
ISSN
0925-4005
DOI
10.1016/j.snb.2021.130624
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > ELECTRICAL AND BIOMEDICAL ENGINEERING(전기·생체공학부) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE