343 261

Full metadata record

DC FieldValueLanguage
dc.contributor.author유형석-
dc.date.accessioned2022-12-06T04:29:09Z-
dc.date.available2022-12-06T04:29:09Z-
dc.date.issued2022-05-
dc.identifier.citationIEEE ACCESS, v. 10, Page. 54563-54571en_US
dc.identifier.issn2169-3536en_US
dc.identifier.urihttps://ieeexplore.ieee.org/document/9779204en_US
dc.identifier.urihttps://repository.hanyang.ac.kr/handle/20.500.11754/178014-
dc.description.abstractA small antenna system plays a vital role in wireless communication and monitoring of key-signs through information collected by implantable devices. Therefore, this study presents an ultra-miniaturized antenna for deeply medical implants, operating at 2.45 GHz industrial, scientific, and medical (ISM) band. To achieve a miniaturized geometry, slotted ground plane and patch, a thin substrate, and a superstrate are used. A liquid crystalline polymer material (Rogers ULTRALAM; tan delta=0.0025 and epsilon(r) =2.9) is used as the substrate and superstrate. The proposed antenna has a surface area of 6 x 6.5 mm(2) and a thickness of 0.2 mm. A realistic device-like environment and analysis in different implantation (homogeneous and heterogeneous + in different organs) sites are used to check and extend the applicability in realistic multiple implanted applications. To ensure the reliability of the communication, link budget is analyzed, which shows that the antenna can successfully communicates up to twenty meters. The proposed antenna has an impedance (10-dB) bandwidth of 480 MHz and peak realized gain of -16.5 dBi in homogeneous phantom. Further, to check the compliance with IEEE C905.1-2005 safety limits, the specific absorption rate is analyzed and found 185.56, 170.24, 134.5, and 124.2 W/kg., which limits with the radiated powers of the antenna to 9.21, 8.56, 10.54, and 12.48 mW in small intestine, large intestine, stomach, and heart, respectively. Finally, the antenna is fabricated and performed in-vitro measurements by placing the integrated antenna inside minced pork. The measured results confirm the trends of the simulated results. The proposed antenna exhibits quasi-omnidirectional radiation patterns in both planes. The analysis confirm that the proposed antenna is suitable for deeply implanted biomedical devices such as leadless pacemakers and wireless capsule endoscopes.en_US
dc.description.sponsorshipThis work was supported by the National Research Foundation of Korea (NRF) Grant by the Korean Government through the Ministry of Science and ICT (MSIT) under Grant 2022R1A2C2003726.en_US
dc.languageenen_US
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INCen_US
dc.source85567_유형석.pdf-
dc.subjectImplantable antennaen_US
dc.subjectultra-miniaturized structureen_US
dc.subjectleadless pacemakeren_US
dc.subjectwireless capsule endoscopyen_US
dc.subjectwide bandwidthen_US
dc.subjecthigh gainen_US
dc.subjectspecific absorption rateen_US
dc.titleUltra-Miniaturized Antenna for Deeply Implanted Biomedical Devicesen_US
dc.typeArticleen_US
dc.relation.volume10-
dc.identifier.doi10.1109/ACCESS.2022.3176720en_US
dc.relation.page54563-54571-
dc.relation.journalIEEE ACCESS-
dc.contributor.googleauthorAbbas, Naeem-
dc.contributor.googleauthorBasir, Abdul-
dc.contributor.googleauthorIqbal, Amjad-
dc.contributor.googleauthorYousaf, Muhammad-
dc.contributor.googleauthorAkram, Adeel-
dc.contributor.googleauthorYoo, Hyoungsuk-
dc.sector.campusS-
dc.sector.daehak공과대학-
dc.sector.department바이오메디컬공학전공-
dc.identifier.pidhsyoo-
dc.identifier.orcidhttps://orcid.org/0000-0001-5567-2566-


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE