116 0

Multiphysics topology optimization scheme considering the evaporation cooling effect

Title
Multiphysics topology optimization scheme considering the evaporation cooling effect
Author
윤길호
Keywords
Topology optimization; Multiphysics system; Evaporation; Adjoint sensitivity analysis
Issue Date
2021-02
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Citation
COMPUTERS & STRUCTURES, v. 244, article no. 106409
Abstract
In this research, a new topology optimization scheme considering the evaporation cooling effect that cools air through the evaporation of liquid is presented. To efficiently cool down hot surfaces or products, it is a viable approach to use the evaporating cooling effect when water absorbs a large amount of heat on evaporating. To numerically consider the evaporating cooling effect, the three nonlinear governing equations, i.e., Navier-Stokes equation, heat transfer equation, and moisture transportation, should be coupled and analyzed; Air movement, temperature convection, and moisture transportation should be mutually coupled and analyzed. Due to the movement of air, the moisture inside porous media evaporates and the velocities, temperature, and moisture distributions of porous media are subject to be changed. From a topology optimization point of view, the material properties as well as the governing equations are interpolated with respect to the design variables defined at each finite element. After solving topology optimization problems, it is possible to find out the optimal distributions of porous media to control the states of the system. Through several numerical examples, the validity of the present topology optimization method is illustrated.
URI
https://www.sciencedirect.com/science/article/pii/S0045794920302121?via%3Dihubhttps://repository.hanyang.ac.kr/handle/20.500.11754/176273
ISSN
0045-7949; 1879-2243
DOI
10.1016/j.compstruc.2020.106409
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > MECHANICAL ENGINEERING(기계공학부) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE