156 0

Full metadata record

DC FieldValueLanguage
dc.contributor.author김기현-
dc.date.accessioned2022-10-19T04:56:12Z-
dc.date.available2022-10-19T04:56:12Z-
dc.date.issued2021-01-
dc.identifier.citationJOURNAL OF HAZARDOUS MATERIALS, v. 402, article no. 123695, page. 1-10en_US
dc.identifier.issn0304-3894; 1873-3336en_US
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0304389420316812en_US
dc.identifier.urihttps://repository.hanyang.ac.kr/handle/20.500.11754/175521-
dc.description.abstractIt is desirable to develop novel multipurpose phase change materials (PCMs) with improved energy storage and release characteristics. In this study, the utility of a nanocomposite composed of a metal-organic framework (MOF) and graphite was explored for shape-stable PCMs. The prepared MOF-integrated graphite featured favorable structural characteristics (such as large specific surface area (550.6 m(2)/g), increased total pore volume, and dominant mesopore structure). The obtained composite with a high energy storage capacity (111.4 J/g) exhibited an electrical resistivity that was at least 7 orders of magnitude lower than that of the pristine PCM. In addition, the alkane possessed enhanced chemical compatibility with the supporting scaffolds, outstanding shape, and thermal stabilities. The strong structural connectivity, high specific surface area, and pore size dis-tributions (micro/mesopores) of the scaffolds play a remarkable role in large PCM infiltration ratio, high electrical conductivity, and improved thermal properties of as-prepared composites. It was also suggested that the cavities of the MOF, filled with graphite and the pi-pi interactions between strand ligands, generate favorable pathways in the nanocomposites. Subsequently creates a supramolecular "wire-like" paths and reduce the resistivity of the parent materials. Therefore, this multifunctional material shows the potential for applications in electro/thermal energy management systems.en_US
dc.description.sponsorshipThis work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2019R1A2C4100284).en_US
dc.language.isoenen_US
dc.publisherELSEVIERen_US
dc.subjectAlkane; metal–organic framework; graphite; thermal energy storagege; electrical resistivityen_US
dc.titlePotential utility of HKUST-1-graphite nanocomposite to endow alkane with high thermal properties and low electrical resistivityen_US
dc.typeArticleen_US
dc.relation.volume402-
dc.identifier.doi10.1016/j.jhazmat.2020.123695en_US
dc.relation.page1-10-
dc.relation.journalJOURNAL OF HAZARDOUS MATERIALS-
dc.contributor.googleauthorAtinafu, Dimberu G.-
dc.contributor.googleauthorChang, Seong Jin-
dc.contributor.googleauthorBerardi, Umberto-
dc.contributor.googleauthorKim, Ki-Hyun-
dc.contributor.googleauthorKim, Sumin-
dc.relation.code2021000701-
dc.sector.campusS-
dc.sector.daehakCOLLEGE OF ENGINEERING[S]-
dc.sector.departmentDEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING-
dc.identifier.pidkkim61-
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > CIVIL AND ENVIRONMENTAL ENGINEERING(건설환경공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE