150 0

Oil industry waste based non-magnetic and magnetic hydrochar to sequester potentially toxic post-transition metal ions from water

Title
Oil industry waste based non-magnetic and magnetic hydrochar to sequester potentially toxic post-transition metal ions from water
Author
전병훈
Keywords
Sesame oil cake; Hydrothermal carbonization; Adsorption; Lead; Water treatment
Issue Date
2020-12
Publisher
ELSEVIER
Citation
JOURNAL OF HAZARDOUS MATERIALS, v. 400, article no. 123247
Abstract
Solid waste conversion to value-added products is a stepping stone towards sustainable environment. Herein, sesame oil cake (SOC), an oil industry waste was utilized as a precursor to develop hydrochar (HC) samples by varying reaction temperature (150–250 °C) and time span (2–8 h), chemically treated with 10% H2O2 to optimize a sample with maximum yield and Pb(II) adsorption. Highest yield (29.2 %) and Pb(II) (24.57 mg/g at Co: 15 mg/L) adsorption was observed on SOCHC@200 °C/6 h, magnetized (mSOCHC@200 °C/6 h) for comparative study. XRD displayed highly crystalline SOCHC@200 °C/6 h and amorphous mSOCHC@200 °C/6 h, both having a characteristic cellulose peak at 14.9°. mSOCHC@200 °C/6 h displayed superparamagnetic behavior with 11.2 emu/g saturation magnetization. IR spectra confirmed the development of samples rich in oxygen containing functionalities; an additional peak for iron oxides appeared at 586 cm−1 in mSOCHC@200°C/6 h spectrum. Four major peaks at 531.9, 399.9, 348.2 and 284.7 eV, assigned to O 1s, N 1s, Ca 2p and C 1s, respectively were observed during XPS analyses. An additional peak at 710.3 eV, ascribed to Fe 2p was observed in mSOCHC@200C/6 h XPS spectrum, while a peak at 143.2 eV for Pb 4f appeared in spectra of both Pb(II) saturated samples. pH dependent (maximum at ∼6.7), exothermic Pb(II) adsorption was found. About 50–70% (at Co: 25 mg/L) adsorption on both SOCHC@200 °C/6 h and mSOCHC@200 °C/6 h was accomplished in a minute, attaining equilibrium in 180 and 240 min, respectively. Error functions and superimposed qe, exp. and qe, cal. values supported Langmuir isotherm model applicability, with respective qm values of 304.9 and 361.7 mg/g at 25 °C for SOCHC@200 °C/6 h and mSOCHC@200 °C/6 h. Kinetic data was fitted to PSO model. Highest (between 92.2 and 88.9 %) amount of Pb(II) from SOCHC@200 °C/6 h and mSOCHC@200 °C/6 h was eluted by 0.01 M HCl.
URI
https://www.sciencedirect.com/science/article/pii/S030438942031236X?via%3Dihubhttps://repository.hanyang.ac.kr/handle/20.500.11754/172967
ISSN
0304-3894; 1873-3336
DOI
10.1016/j.jhazmat.2020.123247
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > EARTH RESOURCES AND ENVIRONMENTAL ENGINEERING(자원환경공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE