230 0

Expanded Longitudinal Deformation Profile in Tunnel Excavations Considering Rock Mass Conditions via 3D Numerical Analyses

Title
Expanded Longitudinal Deformation Profile in Tunnel Excavations Considering Rock Mass Conditions via 3D Numerical Analyses
Author
유한규
Keywords
tunnel; longitudinal deformation profile; numerical analysis; FLAC; convergence
Issue Date
2021-06
Publisher
MDPI
Citation
APPLIED SCIENCES-BASEL, v. 11, NO 12, Page. 5405-5405
Abstract
In the convergence–confinement method, the longitudinal deformation profile (LDP) serves as a graphical representation of the actual tunnel convergence (both ahead of and behind the face); therefore, it is considered important for determining the distance of support installation from the face or the timing after excavation in this method. The LDP is a function of the rock mass quality, excavation size, and state of in situ stresses; thus, obtaining the LDP according to the rock mass conditions is essential for analyzing the complete behavior of convergence during tunnel excavation. The famous LDP shows that the best fit for the measured values of tunnel internal displacement reported simply expresses the ratio of the preceding displacement as approximately 0.3. This can lead to an error when predicting the ratio of the preceding displacement while neglecting the rock conditions; consequently, a complete tunnel behavior analysis cannot be realized. To avoid such error, the finite difference method software FLAC 3D is used to develop an expanded longitudinal deformation profile (ELDP) according to the rock mass conditions. The ELDP is represented by graphs featuring different shapes according to the rock mass rating (RMR), and the empirical formula of the LDP best fitted for the tunnel convergence measurement values is expanded. This expanded LDP formula is proposed in a generalized form, including the parameters α and β from the empirical equation. These parameters α and β are expressed as functions of the RMR and initial stress. Statistical analysis results of the 3D numerical analysis of 35 cases were analyzed in the ranges of α = 0.898–2.416 and β = 1.361–2.851; this result is based on the empirical formula of Hoek (1999) (α = 1.1, β = 1.7), which was expanded in the current study according to the rock quality and initial stress conditions.
URI
https://www.mdpi.com/2076-3417/11/12/5405https://repository.hanyang.ac.kr/handle/20.500.11754/171626
ISSN
20763417
DOI
10.3390/app11125405
Appears in Collections:
COLLEGE OF ENGINEERING SCIENCES[E](공학대학) > CIVIL AND ENVIRONMENTAL ENGINEERING(건설환경공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE