170 0

Full metadata record

DC FieldValueLanguage
dc.contributor.author권일한-
dc.date.accessioned2022-03-14T07:49:24Z-
dc.date.available2022-03-14T07:49:24Z-
dc.date.issued2020-04-
dc.identifier.citationSEPARATION AND PURIFICATION TECHNOLOGY, v. 236, article no. 116245en_US
dc.identifier.issn1383-5866-
dc.identifier.issn1873-3794-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S1383586619332125?via%3Dihub-
dc.identifier.urihttps://repository.hanyang.ac.kr/handle/20.500.11754/169049-
dc.description.abstractWhile Co represents the most efficient metal for activating Oxone to degrade organic contaminants, it is still highly desired to develop reusable and easy-to-recover heterogeneous Co-based catalysts. As chemistry of metal coordination compounds advances, a special class of organometallic polymers, so-called "coordination polymers" (CPs), has been developed. CPs contain repeated and cross-linked coordination entities to afford hierarchical structures with evenly-distributed Co moieties, making CPs attractive for activating Oxone. In this study, three CoCPs are particularly developed for the first time as heterogeneous catalysts to activate Oxone. Specifically, three organic ligands, including cyanuric acid (CA), trithiocyanuric acid (TTA), and pyridinedicarboxylic acid (PDA), were employed to investigate the effect of ligand on physical and chemical properties of the resulting CoCPs. More importantly, their catalytic activities for activating Oxone are compared and studied through investigating their distinct characteristics. As decolorization of Acid Red (AR) is employed as a model test for evaluating Oxone activation, these CoCPs outperform conventional Co3O4 nanoparticles (NPs) for activating Oxone. Among these CoCPs, CoCA exhibits the highest catalytic activity, followed by COTTA and CoPDA, because CoCA possesses a much higher surface area and pore volume as well as a higher fraction of Co content. These CoCPs also remain effective under weakly acidic and basic as well as saline conditions for activating Oxone to decolorize AR. CoCPs are reusable to activate Oxone over multiple cycles and maintained regeneration efficiencies > 90%. These features validate that CoCPs can be promising alterative catalysts for activating Oxone to degrade organic contaminants.en_US
dc.language.isoenen_US
dc.publisherELSEVIERen_US
dc.subjectCoordination polymeren_US
dc.subjectOxoneen_US
dc.subjectAcid Red dyeen_US
dc.subjectCobalten_US
dc.subjectHeterogeneousen_US
dc.titleCobalt-based coordination polymers as heterogeneous catalysts for activating Oxone to degrade organic contaminants in water: A comparative studyen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.seppur.2019.116245-
dc.relation.journalSEPARATION AND PURIFICATION TECHNOLOGY-
dc.contributor.googleauthorLi, Meng-Chia-
dc.contributor.googleauthorDing, Dahu-
dc.contributor.googleauthorLin, Kun-Yi Andrew-
dc.contributor.googleauthorKwon, Eilhann-
dc.relation.code2020053569-
dc.sector.campusS-
dc.sector.daehakCOLLEGE OF ENGINEERING[S]-
dc.sector.departmentDEPARTMENT OF EARTH RESOURCES AND ENVIRONMENTAL ENGINEERING-
dc.identifier.pidek2148-
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > EARTH RESOURCES AND ENVIRONMENTAL ENGINEERING(자원환경공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE