668 0

다양한 조건의 플라즈마에서 플라즈마 변수를 측정하기 위한 부유형 정전탐침법 연구

Title
다양한 조건의 플라즈마에서 플라즈마 변수를 측정하기 위한 부유형 정전탐침법 연구
Other Titles
Studies on floating Langmuir probe methods to measure plasma parameters at various plasma conditions
Author
최익진
Alternative Author(s)
Choi, Ikjin
Advisor(s)
정진욱
Issue Date
2014-08
Publisher
한양대학교
Degree
Doctor
Abstract
본 논문에서는 플라즈마 전위가 매우 높은 플라즈마나 전기적으로 부유된 용기에서 발생시킨 플라즈마에서 다양한 플라즈마 변수를 측정하기 위한 새로운 부유형 랭뮤어 정전탐침 측정방법에 대해서 제안하였다. 랭뮤어 이중탐침법 및 랭뮤어 삼중탐침과 같은 기존의 부유형 측정방법은 부유된 용기에서 발생한 플라즈마를 측정할 수 있지만 랭뮤어 단일탐침법처럼 많은 종류의 플라즈마 변수를 측정하지는 못하였다. 본 논문에서 제안한 비대칭 이중탐침법은 기존의 대칭형 이중탐침법의 구조에서 한쪽 탐침의 면적을 다른 쪽 탐침에 비해 매우 넓은 면적을 갖게 함으로서 단일탐침법과 유사한 전류-전압 특성곡선(I-V characteristics curve)을 구할 수 있었다. 또한 랭뮤어 단일탐침법과 실험결과를 비교함으로서 랭뮤어 단일탐침법과 유사한 측정치를 보여준다는 것을 확인하였다 또한 플라즈마에 하나의 탐침을 삽입한 후 전압입력단와 탐침 사이에 직렬차단축전기(DC blocking capacitor)를 연결하여 플라즈마 내 삽입된 탐침을 부유시키는 부유형 단일탐침법에 대해서도 제안하였다. 부유형 단일탐침법에 들어간 직렬차단축전기는 탐침의 전위를 플라즈마의 부유전위(Floating potential)로 유지시켜 준다. 이 때 전압입력단에 일정한 입력 전압을 인가하면 탐침의 전위가 변화하며 다시 부유전위가 되기까지 생기는 과도현상이 발생한다. 이 과도 현상 중 탐침의 전류를 측정하고 탐침의 전압은 직렬차단축전기의 축전용량과 탐침에 흐른 전류를 이용하여 시간에 다른 탐침의 전위 변화를 계산할 수 있다. 이 측정법 역시 랭뮤어 단일탐침법과 비교하였으며 측정결과 상당히 높은 정합도를 보여주었다. 랭뮤어 단일탐침법을 기반으로 한 정전탐침법의 해석은 이온전류에 대한 해석이 필수적이다. 이온전류는 랭뮤어 단일탐침법의 해석에서 상수로 가정하고 해석하는 경우도 있지만 정확한 측정을 위해서는 이온입사궤적에 따라 최적화된 이론적 모델을 찾아야 된다. 매 상황에 따라 최적화된 이온의 입사에 대한 이론적 모델을 선택하는 것은 쉽지 않고, 이온의 입사 모델은 해석도 상당히 어려운 경우가 많다. 마지막으로 랭뮤어 단일탐침법을 해석하는데 이온전류에 대한 고려가 없이 보다 간단한 방법으로 플라즈마 변수를 측정할 수 있는 전류-전압 특성곡선 미분해석법에 대해서 연구하였다. Francis. F. Chen 에 의해 맥스웰리언 전자분포에서 제안된 모델을 실제 실험을 통하여 검증하여 보았으며 이중맥스웰리언 전자분포에서 이론적인 해석과 실험적인 비교 검증을 진행하였다. 맥스웰리언 전자분포에서는 기존 단일탐침법 해석법과 거의 유사한 측정결과가 나왔으며, 이중맥스웰리언 전자분포에서는 전류-전압 특성곡선 미분해석법으로 측정한 전자온도가 기존 전자에너지확률함수 해석법으로 측정한 유효전자온도보다 약간 낮게 측정되는 것을 이론과 실험으로 확인하였다.|Conventional floating probe methods, called double Langmuir probe or triple Langmuir probe method, measure only two plasma parameters, such as electron temperature and ion density. In this study, new floating Langmuir probe methods (asymmetric double probe and floating single probe) are proposed to measure various plasma parameters (plasma density, electron temperature, and electron energy probability function (EEPF)) in plasmas with floating wall. The asymmetric double probe is similar to a conventional single Langmuir probe method except that the floating probe consists of two electrodes. One electrode is a small measurement probe, and the other is a large reference probe. From the measured current-voltage (I-V) characteristic curve, the electron density, electron temperature, and EEPF can be obtained. The advantage of this asymmetric double probe method is that the sweep voltage for the measurement can be much reduced even in the case where the plasma potential is significantly high. The floating single probe method, which is connected to a DC blocking capacitor between the probe electrode and the measurement circuit, is also proposed. The serially-connected DC block capacitor keeps the probe potential to be a floating potential of the plasma. This method has a benefit in case of the measurement in plasmas with high plasma potential with respect to the ground potential because the conventional single Langmuir probe needs higher sweep voltage system in the measurement. The plasma density and electron temperature obtained from the asymmetric double probe method and the floating single probe method agree well with those of the single Langmuir probe method. In plasma diagnostics with the single Langmuir probe, the electron temperature is usually obtained from the slope of the logarithm of the electron current or from the electron energy probability functions of current-voltage (I-V) characteristic curve. Recently, Chen [F. F. Chen, Phys. Plasmas 8, 3029 (2001)] suggested a derivative analysis method to obtain electron temperature by the ratio between the probe current and the derivative of the probe current at a plasma potential where the ion current becomes zero. Based on this method, electron temperatures and electron densities were measured and compared with those from the EEPF measurement in Maxwellian and bi-Maxwellian electron distribution conditions. In a bi-Maxwellian electron distribution, we found the electron temperature obtained from the method is always lower than the effective temperatures derived from EEPFs. The theoretical analysis for this is presented.; Conventional floating probe methods, called double Langmuir probe or triple Langmuir probe method, measure only two plasma parameters, such as electron temperature and ion density. In this study, new floating Langmuir probe methods (asymmetric double probe and floating single probe) are proposed to measure various plasma parameters (plasma density, electron temperature, and electron energy probability function (EEPF)) in plasmas with floating wall. The asymmetric double probe is similar to a conventional single Langmuir probe method except that the floating probe consists of two electrodes. One electrode is a small measurement probe, and the other is a large reference probe. From the measured current-voltage (I-V) characteristic curve, the electron density, electron temperature, and EEPF can be obtained. The advantage of this asymmetric double probe method is that the sweep voltage for the measurement can be much reduced even in the case where the plasma potential is significantly high. The floating single probe method, which is connected to a DC blocking capacitor between the probe electrode and the measurement circuit, is also proposed. The serially-connected DC block capacitor keeps the probe potential to be a floating potential of the plasma. This method has a benefit in case of the measurement in plasmas with high plasma potential with respect to the ground potential because the conventional single Langmuir probe needs higher sweep voltage system in the measurement. The plasma density and electron temperature obtained from the asymmetric double probe method and the floating single probe method agree well with those of the single Langmuir probe method. In plasma diagnostics with the single Langmuir probe, the electron temperature is usually obtained from the slope of the logarithm of the electron current or from the electron energy probability functions of current-voltage (I-V) characteristic curve. Recently, Chen [F. F. Chen, Phys. Plasmas 8, 3029 (2001)] suggested a derivative analysis method to obtain electron temperature by the ratio between the probe current and the derivative of the probe current at a plasma potential where the ion current becomes zero. Based on this method, electron temperatures and electron densities were measured and compared with those from the EEPF measurement in Maxwellian and bi-Maxwellian electron distribution conditions. In a bi-Maxwellian electron distribution, we found the electron temperature obtained from the method is always lower than the effective temperatures derived from EEPFs. The theoretical analysis for this is presented.
URI
https://repository.hanyang.ac.kr/handle/20.500.11754/129800http://hanyang.dcollection.net/common/orgView/200000424967
Appears in Collections:
GRADUATE SCHOOL[S](대학원) > ELECTRICAL ENGINEERING(전기공학과) > Theses (Ph.D.)
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE