354 0

Cross-plane thermoelectric Seebeck coefficients in nanoscale Al2O3/ZnO superlattice films

Title
Cross-plane thermoelectric Seebeck coefficients in nanoscale Al2O3/ZnO superlattice films
Author
박진성
Keywords
HIGH FIGURE; POWER; MERIT
Issue Date
2019-02
Publisher
ROYAL SOC CHEMISTRY
Citation
JOURNAL OF MATERIALS CHEMISTRY C, v. 7, NO 6, Page. 1670-1680
Abstract
Superlattice thin films, which are used in thermoelectric (TE) devices for small-scale solid-state cooling and for generating electrical power, have recently been attracting attention due to their low dimensionality, low thermal conductivity, and enhanced power factor. Considering the measurement techniques for characterizing TE properties, very limited information, including cross-plane Seebeck coefficients of superlattice films, has been reported. This information is required for the assessment of the interface between the films and to understand phonon scattering in superlattice films. In this report, thermally stable cross-plane thermoelectric Seebeck coefficients of Al2O3/ZnO (AO/ZnO) superlattice films are presented, at temperature differences (T) ranging from 2 to 12 K. Longitudinal (in-plane) thermal diffusion in the Cu/AO/ZnO/Cu samples, which occurred during the measurements due to the size differences among the samples located between a micro-Peltier and aluminum nitride cooling plate, was investigated. The cross-plane Seebeck coefficients of 3- and 6-cycled AO/ZnO superlattice films were determined to be approximate to 9.4 +/- 0.4 and approximate to 30.6 +/- 0.7 V K-1, respectively, showing stable values in the evaluated T range. Two distinct phenomena, in-plane thermal diffusion and the effect of the environment, were identified in cross-plane Seebeck measurements as dominant factors controlling the temperature coefficient of AO/ZnO superlattice films. In addition, a new TE parameter, the Seebeck temperature coefficient, was proposed for superlattice films.
URI
https://pubs.rsc.org/en/content/articlelanding/2019/TC/C8TC05114C#!divAbstracthttps://repository.hanyang.ac.kr/handle/20.500.11754/122315
ISSN
2050-7526; 2050-7534
DOI
10.1039/c8tc05114c
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > MATERIALS SCIENCE AND ENGINEERING(신소재공학부) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE