219 0

Full metadata record

DC FieldValueLanguage
dc.contributor.author김영득-
dc.date.accessioned2020-01-23T04:51:22Z-
dc.date.available2020-01-23T04:51:22Z-
dc.date.issued2019-12-
dc.identifier.citationSEPARATION AND PURIFICATION TECHNOLOGY, v. 229, Article no. 115794en_US
dc.identifier.issn1383-5866-
dc.identifier.issn1873-3794-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S1383586619321124-
dc.identifier.urihttps://repository.hanyang.ac.kr/handle/20.500.11754/122233-
dc.description.abstractThis paper presents an integrated theoretical model to evaluate the performance of a flat-sheet membrane-based absorptive dehumidification module with different flow arrangements (i.e., cocurrent, countercurrent, and cross flow configurations) using an aqueous lithium chloride desiccant. The model results showed good consistency with experimental data, with a maximum relative error of approximately 7%. The performance of the flat-sheet dehumidification module was evaluated for various air and solution channel heights ranging from 1 to 5 mm at a constant Reynolds number in both channels, in terms of sensible, latent, and total effectivenesses. The sensible effectiveness increased with a decrease in the air channel height and an increase in the solution channel height; in particular, the effect of the solution channel height was more pronounced in the cocurrent flow configuration. In addition, the latent effectiveness increased with a decrease in both channel heights. Thus, there was a trade-off between the effects of the solution channel height on the sensible and latent effectivenesses; consequently, the effect of the solution channel height on the total effectiveness was mitigated. The total effectiveness was observed to decrease in the order of countercurrent, cross-, and cocurrent flow configurations; here, its value in the countercurrent flow configuration was approximately 0.788 when both channel heights were 1 mm.en_US
dc.description.sponsorshipThis study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03035821) and by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) funded by the Ministry of Trade, Industry and Energy (MOTIE) of the Republic of Korea (No. 20194010201740).en_US
dc.language.isoen_USen_US
dc.publisherELSEVIER SCIENCE BVen_US
dc.subjectDehumidificationen_US
dc.subjectMembraneen_US
dc.subjectLiquid desiccanten_US
dc.subjectFlow configurationen_US
dc.subjectChannel heighten_US
dc.titleIntegrated theoretical model for performance evaluation of flat-sheet membrane-based absorptive dehumidification module using lithium chloride-water solutionen_US
dc.typeArticleen_US
dc.relation.volume229-
dc.identifier.doi10.1016/j.seppur.2019.115794-
dc.relation.page1-14-
dc.relation.journalSEPARATION AND PURIFICATION TECHNOLOGY-
dc.contributor.googleauthorJeon, Woo-Jin-
dc.contributor.googleauthorKim, Woo-Seung-
dc.contributor.googleauthorKim, Young-Deuk-
dc.relation.code2019040935-
dc.sector.campusE-
dc.sector.daehakCOLLEGE OF ENGINEERING SCIENCES[E]-
dc.sector.departmentDEPARTMENT OF MECHANICAL ENGINEERING-
dc.identifier.pidyoungdeuk-
Appears in Collections:
COLLEGE OF ENGINEERING SCIENCES[E](공학대학) > MECHANICAL ENGINEERING(기계공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE