256 83

Full metadata record

DC FieldValueLanguage
dc.contributor.author류두열-
dc.date.accessioned2019-12-08T05:36:25Z-
dc.date.available2019-12-08T05:36:25Z-
dc.date.issued2018-05-
dc.identifier.citationINTERNATIONAL JOURNAL OF CONCRETE STRUCTURES AND MATERIALS, v. 12, no. 1en_US
dc.identifier.issn1976-0485-
dc.identifier.issn2234-1315-
dc.identifier.urihttps://link.springer.com/article/10.1186%2Fs40069-018-0249-4-
dc.identifier.urihttps://repository.hanyang.ac.kr/handle/20.500.11754/118835-
dc.description.abstractThis study aimed to investigate the bond properties of prestressing strands embedded in ultra-high-performance fiberreinforced concrete (UHPFRC). Toward this end, two types of prestressing strands with diameters of 12.7 and 15.2 mm were considered, along with various concrete cover depths and initial prestressing force magnitudes. The average bond strength of the strands in UHPFRC was estimated by using pullout tests, and the transfer length was evaluated based on a 95% average maximum strain method. Test results indicated that the average bond strength of the pretensioned strand reduced as the diameter of the strand increased, and was between the bond strengths of round and deformed steel rebars. Higher bond strength was also obtained with a lower embedment length. Based on a comparison of p value, the bar diameter and embedment length most significantly influenced the bond strength of strands in UHPFRC, compared to a ratio of cover depth to diameter and initial prestressing force. Pretensioned strands in UHPFRC exhibited much higher bond strength and shorter transfer length compared with strands embedded in ordinary high-strength concrete. Lastly, ACI 318 and AASHTO LRFD codes significantly overestimated the transfer length of the strands embedded in UHPFRC.en_US
dc.description.sponsorshipThis research was supported by a grant from R&D Program of the Korea Railroad Research Institute, Republic of Korea.en_US
dc.language.isoen_USen_US
dc.publisherSPRINGEROPENen_US
dc.subjectultra-high-performance fiber-reinforced concreteen_US
dc.subjectprestressing stranden_US
dc.subjectbond strengthen_US
dc.subjecttransfer lengthen_US
dc.titleBond Behavior of Pretensioned Strand Embedded in Ultra-High-Performance Fiber-Reinforced Concreteen_US
dc.typeArticleen_US
dc.relation.no1-
dc.relation.volume12-
dc.identifier.doi10.1186/s40069-018-0249-4-
dc.relation.page1-1-
dc.relation.journalINTERNATIONAL JOURNAL OF CONCRETE STRUCTURES AND MATERIALS-
dc.contributor.googleauthorShin, Hyun-Oh-
dc.contributor.googleauthorLee, Seung-Jung-
dc.contributor.googleauthorYoo, Doo-Yeol-
dc.relation.code2018007922-
dc.sector.campusS-
dc.sector.daehakCOLLEGE OF ENGINEERING[S]-
dc.sector.departmentDEPARTMENT OF ARCHITECTURAL ENGINEERING-
dc.identifier.piddyyoo-


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE