290 0

Full metadata record

DC FieldValueLanguage
dc.contributor.author엄석기-
dc.date.accessioned2019-12-07T17:17:04Z-
dc.date.available2019-12-07T17:17:04Z-
dc.date.issued2018-04-
dc.identifier.citationELECTROCHIMICA ACTA, v. 275, page. 87-99en_US
dc.identifier.issn0013-4686-
dc.identifier.issn1873-3859-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0013468618308983?via%3Dihub-
dc.identifier.urihttps://repository.hanyang.ac.kr/handle/20.500.11754/118207-
dc.description.abstractIn the present study, a three-dimensional lattice Boltzmann model based on the quasi-random nanostructural model is proposed to evaluate the mass transport properties and catalyst utilization of fuel cell catalyst layers in pursuance of catalyst performance improvement. A series of catalyst layers is randomly generated with statistical significance at the 95% confidence level to reflect the heterogeneity of the catalyst layer nanostructures. The nanoscale gas transport phenomena inside the catalyst layers are simulated by the D3Q19 (i.e., three-dimensional, 19 velocities) lattice Boltzmann method, and the corresponding mass transport characteristics are mathematically modeled in terms of structural properties. Considering the nanoscale reactant transport phenomena, a transport-based effective catalyst utilization factor is defined and statistically analyzed to determine the structure-transport influence on catalyst utilization. The tortuosity estimation results clearly show that the classic Bruggeman equation underestimates the tortuosity of the catalyst layers and should be modified for PEFC applications. Subsequently, the effective mass diffusion coefficient is calculated by applying the tortuosity factors to the Knudsen diffusion coefficient in the catalyst layers, and it shows good agreement with published experimental data. These results indicate that Knudsen diffusion is the dominant mass transfer mechanism for fuel cell catalyst layers and that the pre-estimated tortuosity accurately reflects the mass transfer phenomena in the catalyst layers. Furthermore, catalyst utilization can be affected by excessive Pt/C catalyst loading due to the lack of pore interconnections, and it is significantly limited by the substantive reactant mass transport path inside the fuel cell catalyst layers.en_US
dc.description.sponsorshipThis work was supported by the Korea Institute of Energy Technology Evaluation and Planning [grant no. 201700000000401], the Korea Evaluation Institute of Industrial Technology [grant no. 201700000001328], and the National Research Foundation of Korea [grant no. 201700000000254].en_US
dc.language.isoen_USen_US
dc.publisherPERGAMON-ELSEVIER SCIENCE LTDen_US
dc.subjectPolymer electrolyte fuel cellsen_US
dc.subjectNanoscale transport phenomenaen_US
dc.subjectCatalyst utilizationen_US
dc.subjectLattice Boltzmann methoden_US
dc.subjectStatistical analysisen_US
dc.titleComputational prediction of nanoscale transport characteristics and catalyst utilization in fuel cell catalyst layers by the lattice Boltzmann methoden_US
dc.typeArticleen_US
dc.relation.volume275-
dc.identifier.doi10.1016/j.electacta.2018.04.138-
dc.relation.page87-99-
dc.relation.journalELECTROCHIMICA ACTA-
dc.contributor.googleauthorShin, Seungho-
dc.contributor.googleauthorKim, Ah-Reum-
dc.contributor.googleauthorUm, Sukkee-
dc.relation.code2018000202-
dc.sector.campusS-
dc.sector.daehakCOLLEGE OF ENGINEERING[S]-
dc.sector.departmentDIVISION OF MECHANICAL ENGINEERING-
dc.identifier.pidsukkeeum-
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > MECHANICAL ENGINEERING(기계공학부) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE