244 0

Full metadata record

DC FieldValueLanguage
dc.contributor.author박진성-
dc.date.accessioned2019-12-05T13:41:39Z-
dc.date.available2019-12-05T13:41:39Z-
dc.date.issued2018-02-
dc.identifier.citationNANO ENERGY, v. 46, page. 193-202en_US
dc.identifier.issn2211-2855-
dc.identifier.issn2211-3282-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S2211285518300545?via%3Dihub-
dc.identifier.urihttps://repository.hanyang.ac.kr/handle/20.500.11754/117550-
dc.description.abstractTo date, lithium-oxygen batteries (LOBs) using porous carbon materials as the air cathode have been widely studied. However, a fundamental issue of carbon electrode still remains; the carbon surface is unstable and is highly reactive in contact with Li2O2, resulting in the formation of irreversible byproducts (e.g., Li2CO3). To address this issue, we investigated the use of surface protection layers for improving the cycling stability of porous carbon-based LOB cathode. We employed atomic layer deposition (ALD) for conformal coating of two types of overlayers (In2O3 and TiN), i.e., oxide and nitride thin film, on an electrospun carbon nanopaper (CNp) membrane. The LOB cell with In2O3-coated CNp exhibited much enhanced cycling performance (over 140 cycles) compared with pristine CNp and TiN-coated CNp as control samples (less than 60 cycles for both cases). To further improve cell efficiency by reducing overpotentials, the surface of In2O3-coated CNp electrode was functionalized by catalytic RuOx nanoparticles, which enables stable and complete discharging and recharging reactions below 4.2 V for an extended period of 165 cycles. Interestingly, after each discharge, nanosheet-like Li2O2 growth was observed on In2O3-coated CNps, which is advantageous for enhanced cycle life. This work demonstrates that use of a free-standing, high surface area carbon membrane, that is conformally encapsulated by a highly conductive and stable oxide protection layer, is essential for enhanced Li-O-2 cell performance by preventing direct contact between underneath carbon and electrolyte.en_US
dc.description.sponsorshipThis work was supported by a Korea CCS R&D Center (KCRC) grant funded by the Korean Government (Ministry of Science, ICT & Future Planning) (No. NRF-2014M1A8A1049303) and by the Wearable Platform Materials Technology Center (WMC), funded by a National Research Foundation of Korea (NRF) Grant of the Korean Government (MSIP) (No. 2016R1A5A1009926).en_US
dc.language.isoen_USen_US
dc.publisherELSEVIER SCIENCE BVen_US
dc.subjectLithium-oxygen batteriesen_US
dc.subjectIndium oxideen_US
dc.subjectCarbon nanofibersen_US
dc.subjectFree-standing electrodeen_US
dc.subjectAtomic layer depositionen_US
dc.titleRational design of protective In2O3 layer-coated carbon nanopaper membrane: Toward stable cathode for long-cycle Li-O-2 batteriesen_US
dc.typeArticleen_US
dc.relation.volume46-
dc.identifier.doi10.1016/j.nanoen.2018.01.045-
dc.relation.page193-202-
dc.relation.journalNANO ENERGY-
dc.contributor.googleauthorJung, Ji-Won-
dc.contributor.googleauthorChoi, Dong-Won-
dc.contributor.googleauthorLee, Chan Kyu-
dc.contributor.googleauthorYoon, Ki Ro-
dc.contributor.googleauthorYu, Sunmoon-
dc.contributor.googleauthorCheong, Jun Young-
dc.contributor.googleauthorKim, Chanhoon-
dc.contributor.googleauthorCho, Su-Ho-
dc.contributor.googleauthorPark, Jin-Seong-
dc.contributor.googleauthorPark, Yong Joon-
dc.relation.code2018006297-
dc.sector.campusS-
dc.sector.daehakCOLLEGE OF ENGINEERING[S]-
dc.sector.departmentDIVISION OF MATERIALS SCIENCE AND ENGINEERING-
dc.identifier.pidjsparklime-
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > MATERIALS SCIENCE AND ENGINEERING(신소재공학부) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE