22 0

Full metadata record

DC FieldValueLanguage
dc.contributor.author문영식-
dc.date.accessioned2019-07-26T06:18:39Z-
dc.date.available2019-07-26T06:18:39Z-
dc.date.issued2006-05-
dc.identifier.citationInternational Conference on Computational Science and Its Applications: Computational Science and Its Applications - ICCSA 2006, v. 3984, Page. 404-411en_US
dc.identifier.isbn978-3-540-34079-9-
dc.identifier.urihttps://link.springer.com/chapter/10.1007/11751649_44-
dc.identifier.urihttp://repository.hanyang.ac.kr/handle/20.500.11754/107939-
dc.description.abstractMost existing methods for content-based image retrieval handle an image as a whole, instead of focusing on an object of interest. This paper proposes object-based image retrieval based on the dominant color pairs between adjacent regions. From a segmented image, the dominant color pairs between adjacent regions are extracted to produce color adjacency matrix, from which candidate regions of DB images are selected. The similarity measure between the query image and candidate regions in DB images is computed based on the color correlogram technique. Experimental results show the performance improvement of the proposed method over existing methods.en_US
dc.language.isoen_USen_US
dc.publisherSPRINGER-VERLAG BERLINen_US
dc.titleObject-based Image Retrieval Using Dominant Color Pairs Between Adjacent Regionsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/11751649_44-
dc.relation.journalLECTURE NOTES IN COMPUTER SCIENCE-
dc.contributor.googleauthorPark, K.T.-
dc.contributor.googleauthorMoon, Y.S.-
dc.relation.code2007206327-
dc.sector.campusE-
dc.sector.daehakCOLLEGE OF COMPUTING[E]-
dc.sector.departmentDIVISION OF COMPUTER SCIENCE-
dc.identifier.pidysmoon-
Appears in Collections:
COLLEGE OF COMPUTING[E] > COMPUTER SCIENCE(소프트웨어학부) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE