246 0

Ultrasensitive detection of low-ppm H2S gases based on palladium-doped porous silicon sensors

Title
Ultrasensitive detection of low-ppm H2S gases based on palladium-doped porous silicon sensors
Author
좌용호
Keywords
ROOM-TEMPERATURE; HIGH-SENSITIVITY; PERFORMANCE
Issue Date
2018-08
Publisher
ROYAL SOC CHEMISTRY
Citation
RSC ADVANCES, v. 8, No. 52, Page. 29995-30001
Abstract
In this study, the sensing properties of palladium-doped porous silicon (Pd/p-Si) substrates for low-ppm level detection of toxic H2S gas are investigated. A Si substrate with dead-end pores ranging from nano- to macroscale was generated by a combined process of metal-assisted chemical etching (MacE) and electrochemical etching with tuned reaction time, in which nano-Pd catalysts were decorated by E-beam sputtering deposition. The sensing properties of the Pd/p-Si were enhanced as the thickness of the substrate layer increased; along with the resulting variation in surface area, this resulted in superior H2S sensing performances in the low-ppm range (less than 3 ppm), with a detection limit of 300 ppb (sensitivity 30%) at room temperature. Furthermore, the sensor displayed excellent selectivity toward the hazardous H2S molecules in comparison with various other reducing gases, including NO2, CO2, NH3, and H-2, showing its potential for application in workplaces or environments affected by other toxic gases. The enhancement in sensing performance was possibly due to the increased dispersion and surface area of Pd nano-catalysts, which led to an increase in chemisorption sites of adsorbate molecules.
URI
https://pubs.rsc.org/en/content/articlehtml/2018/ra/c8ra05520chttps://repository.hanyang.ac.kr/handle/20.500.11754/81286
ISSN
2046-2069
DOI
10.1039/c8ra05520c
Appears in Collections:
COLLEGE OF ENGINEERING SCIENCES[E](공학대학) > MATERIALS SCIENCE AND CHEMICAL ENGINEERING(재료화학공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE