338 0

Tat-enhanced delivery of metallothionein can partially prevent the development of diabetes

Title
Tat-enhanced delivery of metallothionein can partially prevent the development of diabetes
Author
정희용
Keywords
Protein transduction technology; Metallothionein; Oxidative stress; ER stress; NF-kappa B; Diabetes mellitus; Insulin secretion; Insulin resistance; Free radicals
Issue Date
2011-11
Publisher
Elsevier Science INC
Citation
Free Radical Biology and Medicine, 2011, 51(9), P.1666-1674
Abstract
Metallothioneins (MTs) are intracellular low-molecular-weight, cysteine-rich proteins with potent metal-binding and redox functions, but with limited membrane permeativity. The aim of this study was to investigate whether we could enhance delivery of MT-1 to pancreatic islets or beta cells in vitro and in vivo. The second goal was to determine whether increased MT-1 could prevent cellular toxicity induced by high glucose and free fatty acids in vitro (glucolipotoxicity) and ameliorate the development of diabetes induced by streptozotocin in mice or delay the development of diabetes by improving insulin secretion and resistance in the OLETF rat model of type 2 diabetes. Expression of HIV-1 Tat-MT-1 enabled efficient delivery of MT into both INS-1 cells and rat islets. Intracellular MT activity increased in parallel with the amount of protein delivered to cells. The formation of reactive oxygen species, glucolipotoxicity, and DNA fragmentation due to streptozotocin decreased after treating pancreatic beta cells with Tat-MT in vitro. Importantly, in vivo, intraperitoneal injection resulted in delivery of the Tat-MT protein to the pancreas as well as liver, muscle, and white adipose tissues. Multiple injections increased radical-scavenging activity, decreased apoptosis, and reduced endoplasmic reticulum stress in the pancreas. Treatment with Tat-MT fusion protein delayed the development of diabetes in streptozotocin-induced mice and improved insulin secretion and resistance in OLETF rats. These results suggest that in vivo transduction of Tat-MT may offer a new strategy to protect pancreatic beta cells from glucolipotoxicity, may improve insulin resistance in type 2 diabetes, and may have a protective effect in preventing islet destruction in type 1 diabetes. (C) 2010 Elsevier Inc. All rights reserved.
URI
https://www.sciencedirect.com/science/article/pii/S0891584911004722?via%3Dihub
ISSN
0891-5849
DOI
10.1016/j.freeradbiomed.2011.07.019
Appears in Collections:
COLLEGE OF MEDICINE[S](의과대학) > MEDICINE(의학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE