297 0

Effect of Ni on the hot ductility and hot cracking susceptibility of high Mn austenitic cast steel

Title
Effect of Ni on the hot ductility and hot cracking susceptibility of high Mn austenitic cast steel
Author
이창희
Keywords
Cryogenic high manganese alloy; Liquation crack; Ductility dip crack; Hot ductility test; Varestraint test; STACKING-FAULT ENERGY; TWINNING-INDUCED PLASTICITY; FE-MN; TWIP STEELS; CRYOGENIC TEMPERATURES; MECHANICAL-PROPERTIES; BEHAVIOR; ALLOYS; MICROSTRUCTURE; DEPENDENCE
Issue Date
2014-11
Publisher
ELSEVIER SCIENCE SA, PO BOX 564, 1001 LAUSANNE, SWITZERLAND
Citation
Materials Science and Engineering A. (Materials Science and Engineering A, November 07, 2014Vol.618,pp.295-304
Abstract
In the present study, the hot ductility behavior and hot cracking susceptibility of high manganese cast steel were investigated. Based on the 18Mn-0.6C alloy, a nickel was added for cryogenic impact toughness by maintaining the low temperature austenite stability to prevent strain induced martensitic transformation considering the appropriate stacking fault energy for mechanical twinning. A hot ductility test and Varestraint test were carried out to clarify the behavior of heat affected zone (HAZ) liquation and ductility dip cracking that were observed at the multi-pass weld heat affected zone of a nickel added high manganese weld metal for cryogenic uses. The heating and cooling rates were calculated by the three-dimensional Rosenthal's equation based on the actual welding heat input. A brittle temperature range, and a critical strain temperature range for each alloy showed no significant difference, but the overall ductility of the nickel added alloy was lower than the 18Mn alloy due to the lower degree of dynamic recrystallization by the higher stacking fault energy and the existence of the M3P/gamma eutectic and MnS formed by the severe P segregation and higher S content, respectively. As a result of the longitudinal Varestraint test, the total and maximum HAZ crack length and cracked HAZ length of the nickel added alloy were larger than those of 18Mn alloy. The solid-state fracture, i.e. the ductility dip cracking was observed both in the on-cooling hot ductility tested and Varestraint tested alloys. (C) 2014 Elsevier B.V. All rights reserved.
URI
http://www.sciencedirect.com/science/article/pii/S0921509314011459http://hdl.handle.net/20.500.11754/52739
ISSN
0921-5093
DOI
10.1016/j.msea.2014.09.040
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > MATERIALS SCIENCE AND ENGINEERING(신소재공학부) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE