127 0

Chloride ion-driven transformation from Ag3PO4 to AgCl on the hydroxyapatite support and its dual antibacterial effect against Escherichia coli under visible light irradiation

Title
Chloride ion-driven transformation from Ag3PO4 to AgCl on the hydroxyapatite support and its dual antibacterial effect against Escherichia coli under visible light irradiation
Author
Hui, Kwan-San
Keywords
Photocatalytic inactivation; Transformation; Ag3PO4/HA; AgCl/HA; Dual antibacterial function
Issue Date
2016-04
Publisher
SPRINGER HEIDELBERG
Citation
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, v. 23, NO 13, Page. 13458-13466
Abstract
Visible light-driven photocatalytic inactivation of Escherichia coli was performed using hydroxyapatite-supported Ag3PO4 nanocomposites (Ag3PO4/HA). The antibacterial performance was evaluated by the methods of zone of inhibition plates and minimum inhibitory concentration test. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were employed to investigate the instability and transformation of the nanocomposite by comparing the crystalline, phase, and the morphology before and after exposure to Luria-Bertani culture medium under visible light irradiation. Ag3PO4 nanoparticles on the support were found to be shortly transformed into AgCl due to high chloride concentration of Luria-Bertani culture medium. The AgCl/HA nanocomposite showed both excellent intrinsic antibacterial performance contributed by the released silver ions and visible light-induced photocatalytic disinfection toward E. coli cells. This dual antibacterial function mechanism was validated by trapping the hydroxyl free radical and detecting the silver ions during the photocatalytic antibacterial process. The morphological change of E. coli cells in different reaction intervals was obtained by scanning electron microscopy (SEM) to complementally verify photocatalytic inactivation of E. coli. This work suggests that an essential comparison study is required for the antibacterial materials before and after the photocatalytic inactivation of bacterial cells using Ag3PO4 nanoparticles or Ag3PO4-related nanocomposites in mediums containing high-concentration chloride ions.
URI
https://link.springer.com/article/10.1007/s11356-016-6530-7http://hdl.handle.net/20.500.11754/51593
ISSN
0944-1344; 1614-7499
DOI
10.1007/s11356-016-6530-7
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > MECHANICAL ENGINEERING(기계공학부) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE