280 0

Full metadata record

DC FieldValueLanguage
dc.contributor.author신흥수-
dc.date.accessioned2018-03-15T05:09:36Z-
dc.date.available2018-03-15T05:09:36Z-
dc.date.issued2014-07-
dc.identifier.citationACS Applied Matetials & Interfaces, Jul 2014, 6(14), P.11225-11235en_US
dc.identifier.issn1944-8244-
dc.identifier.urihttps://pubs.acs.org/doi/10.1021/am501391z-
dc.description.abstractAlthough bone morphogenic proteins (BMPs) have been widely used for bone regeneration, the ideal delivery system with optimized dose and minimized side effects is still active area of research. In this study, we developed bone morphogenetic protein-2(BMP-2) immobilized poly(L-lactide) (PLLA) nanofibers inspired by polydopamine, which could be ultimately used as membranes for guided bone regeneration, and investigated their effect on guidance of in vitro cell behavior and in vivo bone formation. Surface chemical analysis of the nanofibers confirmed successful immobilization of BMP-2 mediated by polydopamine, and about 9096 of BMP-2 was stably retained on the nanofiber surface for at least 28 days. The alkaline phosphatase activity and calcium mineralization of human mesenchymal stem cells (hMSCs) after 14 days of in vitro culture was significantly enhanced on nanofibers immobilized with BMP-2. More importantly, BMP-2 at a relatively small dose was highly active following implantation to the critical-sized defect in the cranium of mice; radiographic analysis demonstrated that 77.8 +/- 11.796 of newly formed bone was filled within the defect for a BMP-2-immobilized groups at the concentration of 124 +/- 9 ng/cm(2), as compared to 5.9 +/- 1.0 and 34.1 +/- 5.5% recovery, for a defect-only and a polydopamine-only group, respectively. Scanning and transmission electron microscopy of samples from the BMP-2 immobilized group showed fibroblasts and osteoblasts with nanofiber strands in the middle of regenerated bone tissue, revealing the importance of interaction between implanted nanofibers and the neighboring extracellular environment. Taken together, our data support that the presentation of BMP-2 on the surface of nanofibers as immobilized by utilizing polydopamine chemistry may be an effective method to direct bone growth at relatively low local concentration.en_US
dc.description.sponsorshipThis work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (2013R1A2A2A03067809 and 2012K001418).en_US
dc.language.isoenen_US
dc.publisherAmer Chemical SOCen_US
dc.subjectguided bone regenerationen_US
dc.subjectbone morphogenic proteinsen_US
dc.subjectnanofibersen_US
dc.subjectelectrospinningen_US
dc.subjectosteogenic differentiationen_US
dc.subjectpolydopamineen_US
dc.titleEffective Immobilization of BMP-2 Mediated by Polydopamine Coating on Biodegradable Nanofibers for Enhanced in Vivo Bone Formationen_US
dc.typeArticleen_US
dc.relation.no14-
dc.relation.volume6-
dc.identifier.doi10.1021/am501391z-
dc.relation.page11225-11235-
dc.relation.journalACS APPLIED MATERIALS & INTERFACES-
dc.contributor.googleauthorCho, Hyeong-jin-
dc.contributor.googleauthorPerikamana, Sajeesh-
dc.contributor.googleauthorKumar Madhurakkat-
dc.contributor.googleauthorLee, Ji-hye-
dc.contributor.googleauthorLee, Jinkyu-
dc.contributor.googleauthorShin, Heungsoo-
dc.contributor.googleauthorLee, Kyung-Mi-
dc.contributor.googleauthorShin, Choongsoo S.-
dc.relation.code2014023980-
dc.sector.campusS-
dc.sector.daehakCOLLEGE OF ENGINEERING[S]-
dc.sector.departmentDEPARTMENT OF BIOENGINEERING-
dc.identifier.pidhshin-
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > BIOENGINEERING(생명공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE