206 0

Physicochemical Conjugation with Deoxycholic Acid and Dimethylsulfoxide for Heparin Oral Delivery

Title
Physicochemical Conjugation with Deoxycholic Acid and Dimethylsulfoxide for Heparin Oral Delivery
Author
이동윤
Keywords
MOLECULAR-WEIGHT HEPARIN; DEEP-VEIN THROMBOSIS; THROMBOEMBOLISM; ABSORPTION
Issue Date
2011-07
Publisher
AMER CHEMICAL SOC
Citation
BIOCONJUGATE CHEMISTRY, JUL 2011, 22(7), P.1451-1458, 8P.
Abstract
Heparin, as therapeutic medications, cannot be administered orally because of its hydrophilic and high molecular weight. Here, we present a new technology to enhance the absorption of heparin in the intestine through its chemical conjugation with deoxycholic acid (DOCA) that can interact with bile acid transporter in the intestine. For the ampiphilic property and complete dissolution, the modified heparin was physically complexed with dimethylsulfoxide (DMSO). The DOCA-conjugated heparin could form nanoparticles in aqueous solution, whereas it was completely dissolved when treated with above 10% DMSO solution. Molecular dynamics computation study and two-dimensional homonulcear H-1 nuclear overhauser effect spectroscopy (NOESY) NMR spectra demonstrated that one heparin molecule was chemically conjugated with two DOCA molecules that were physically interacted with six DMSO molecules within 4 A via hydrophobic interactions and partly via hydrogen bonding. Its therapeutic efficacy was also pharmaceutically analyzed. When the DMSO-bound DOCA-conjugated heparin was orally administered into mice, its therapeutic efficacy was enhanced according to the amount of bound DMSO. Also, after oral administration of fluorescence-labeled DMSO-bound DOCA-conjugated heparin, it was circulated in the whole body for above 2 h. However, the DOCA-conjugated heparin without DMSO binding was fast eliminated after oral absorption. This study demonstrates that the interaction of structural constraints, DOCA and DMSO, with heparin can serve as a platform technology for potential macromolecule oral delivery.
URI
http://pubs.acs.org/doi/abs/10.1021/bc100594v
ISSN
1043-1802
DOI
10.1021/bc100594v
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > BIOENGINEERING(생명공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE