284 0

Full metadata record

DC FieldValueLanguage
dc.contributor.author신흥수-
dc.date.accessioned2018-03-01T05:28:10Z-
dc.date.available2018-03-01T05:28:10Z-
dc.date.issued2013-01-
dc.identifier.citationBiomedical materials, 2013, 8(1), 014102en_US
dc.identifier.issn1748-6041-
dc.identifier.urihttp://iopscience.iop.org/article/10.1088/1748-6041/8/1/014102-
dc.identifier.urihttp://hdl.handle.net/20.500.11754/41470-
dc.description.abstractThe ultimate goal of tissue engineering is to replace damaged tissues by applying engineering technology and the principles of life sciences. To successfully engineer a desirable tissue, three main elements of cells, scaffolds and growth factors need to be harmonized. Biomaterial-based scaffolds serve as a critical platform both to support cell adhesion and to deliver growth factors. Various methods of fabricating scaffolds have been investigated. One recently developed method that is growing in popularity is called electrospinning. Electrospinning is known for its capacity to make fibrous and porous structures that are similar to natural extracellular matrix (ECM). Other advantages to electrospinning include its ability to create relatively large surface to volume ratios, its ability to control fiber size from micro- to nano-scales and its versatility in material choice. Although early work with electrospun fibers has shown promise in the regeneration of certain types of tissues, further modification of their chemical, biological and mechanical properties would permit future advancements. In this paper, current approaches to the development of modular electrospun fibers as scaffolds for tissue engineering are discussed. Their chemical and physical characteristics can be tuned for the regeneration of specific target tissues by co-spinning of multiple materials and by post-modification of the surface of electrospun fibers. In addition, topology or structure can also be controlled to elicit specific responses from cells and tissues. The selection of proper polymers, suitable surface modification techniques and the control of the dimension and arrangement of the fibrous structure of electrospun fibers can offer versatility and tissue specificity, and therefore provide a blueprint for specific tissue engineering applications.en_US
dc.description.sponsorshipThis study was supported by a research grant from Hanyang University Institute of Aging Society in 2010 (HY-2010-T).en_US
dc.language.isoenen_US
dc.publisherIOP PUBLISHINGen_US
dc.subjectAnimalsen_US
dc.subjectBiocompatible Materialsen_US
dc.subjectchemistryen_US
dc.subjectBone Substitutesen_US
dc.subjectCell Movementen_US
dc.subjectDrug Delivery Systemsen_US
dc.subjectElectric Conductivityen_US
dc.subjectHumansen_US
dc.subjectMaterials Testingen_US
dc.subjectNanofibersen_US
dc.subjectultrastructureen_US
dc.subjectNanoparticlesen_US
dc.titleCurrent approaches to electrospun nanofibers for tissue engineeringen_US
dc.typeArticleen_US
dc.relation.volume8-
dc.identifier.doi10.1088/1748-6041/8/1/014102-
dc.relation.page1-14-
dc.relation.journalBIOMEDICAL MATERIALS-
dc.contributor.googleauthorRim, Nae Gyune-
dc.contributor.googleauthorShin, Choongsoo-
dc.contributor.googleauthorShin, Heungsoo-
dc.relation.code2013001197-
dc.sector.campusS-
dc.sector.daehakCOLLEGE OF ENGINEERING[S]-
dc.sector.departmentDEPARTMENT OF BIOENGINEERING-
dc.identifier.pidhshin-
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > BIOENGINEERING(생명공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE