101 0

Effect of Insulin-Like Growth Factor Blockade on Hyperoxia-Induced Lung Injury

Title
Effect of Insulin-Like Growth Factor Blockade on Hyperoxia-Induced Lung Injury
Author
김태형
Keywords
insulin-like growth factor; hyperoxia-induced lung injury; neutrophils
Issue Date
2012-09
Publisher
Amer Thoracic SOC
Citation
American Journal of Respiratory Cell and Molecular Biology, Sep 2012, 47(3), P.372-378
Abstract
Insulin-like growth factor (IGF)-1 is increased in different models of acute lung injury, and is an important determinant of survival and proliferation in many cells. We previously demonstrated that treatment of mice with IGF-1 receptor-blocking antibody (A12) improved early survival in bleomycin-induced lung injury. We have now examined whether administration of A12 improved markers of lung injury in hyperoxia model of lung injury. C57BL/6 mice underwent intraperitoneal administration of A12 or control antibody (keyhole limpet hemocyanin [KLH]), then were exposed to 95% hyperoxia for 88-90 hours. Mice were killed and bronchoalveolar lavage (BAL) and lung tissue were obtained for analysis. Hyperoxia caused a significant increase in IGF levels in BAL and lung lysates. Peripheral blood neutrophils expressed IGF-1R at baseline and after hyperoxia. BAL neutrophils from hyperoxia-treated mice and patients with acute lung injury also expressed cell surface IGF-1R. A12-treated mice had significantly decreased polymorphonuclear cell (PMN) count in BAL compared with KLH control mice (P = 0.02). BAL from A12-treated mice demonstrated decreased PMN chemotactic activity compared with BAL from KLH-treated mice. Pretreatment of PMNs with A12 decreased their chemotactic response to BAL from hyperoxia exposed mice. Furthermore, IGF-1 induced a dose-dependent chemotaxis of PMNs. There were no differences in other chemotactic cytokines in BAL, including CXCL1 and CXCL2. In summary, IGF blockade decreased PMN recruitment to the alveolar space in a mouse model of hyperoxia. Furthermore, the decrease in BAL PMNs was at least partially due to a direct effect of A12 on PMN chemotaxis.
URI
https://www.atsjournals.org/doi/abs/10.1165/rcmb.2012-0085OC
ISSN
1044-1549
DOI
10.1165/rcmb.2012-0085OC
Appears in Collections:
COLLEGE OF MEDICINE[S](의과대학) > MEDICINE(의학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE