76 0

Full metadata record

DC FieldValueLanguage
dc.contributor.author허재성-
dc.date.accessioned2018-02-08T08:10:59Z-
dc.date.available2018-02-08T08:10:59Z-
dc.date.issued2011-05-
dc.identifier.citationJOURNAL OF MATHEMATICAL PHYSICS; MAY 2011, 52 5, 16p.en_US
dc.identifier.issn0022-2488-
dc.identifier.urihttp://aip.scitation.org/doi/abs/10.1063/1.3582778-
dc.identifier.urihttp://hdl.handle.net/20.500.11754/36334-
dc.description.abstractWe discuss pairs (phi, Phi) of maps, where phi is a map between C*-algebras and Phi is a phi-module map between Hilbert C*-modules, which are generalization of representations of Hilbert C*-modules. A covariant version of Stinespring's theorem for such a pair (phi, Phi) is established, and quantum stochastic processes constructed from pairs ({phi(t)}, {Phi(t)}) of families of such maps are studied. We prove that the quantum stochastic process J = {J(t)} constructed from a phi-quantum dynamical semigroup Phi = {Phi(t)} is a j-map for the quantum stochastic process j = {j(t)} constructed from the given quantum dynamical semigroup phi = {phi(t)}, and that J is covariant if the phi-quantum dynamical semigroup Phi is covariant. (C) 2011 American Institute of Physics. [doi:10.1063/1.3582778]en_US
dc.language.isoenen_US
dc.publisherAMER INST PHYSICS, 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USAen_US
dc.subjectHilbert spaceen_US
dc.subjectStochastic processesen_US
dc.subjectAlgebrasen_US
dc.subjectSubspacesen_US
dc.subjectNoncommutative field theoryen_US
dc.titleQuantum stochastic processes for maps on Hilbert C*-modulesen_US
dc.typeArticleen_US
dc.relation.no5-
dc.relation.volume52-
dc.relation.page--
dc.relation.journalJOURNAL OF MATHEMATICAL PHYSICS-
dc.contributor.googleauthorHeo, Jaeseong-
dc.contributor.googleauthorJi, Un Cig-
dc.relation.code2011205393-
dc.sector.campusS-
dc.sector.daehakCOLLEGE OF NATURAL SCIENCES[S]-
dc.sector.departmentDEPARTMENT OF MATHEMATICS-
dc.identifier.pidhjs-
Appears in Collections:
COLLEGE OF NATURAL SCIENCES[S](자연과학대학) > MATHEMATICS(수학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE