1427 0

Full metadata record

DC FieldValueLanguage
dc.contributor.author이영무-
dc.date.accessioned2017-10-18T02:11:04Z-
dc.date.available2017-10-18T02:11:04Z-
dc.date.issued2015-12-
dc.identifier.citationGREEN CHEMISTRY, v. 17, NO 12, Page. 5196-5205en_US
dc.identifier.issn1463-9262-
dc.identifier.issn1463-9270-
dc.identifier.urihttp://pubs.rsc.org/en/Content/ArticleLanding/2015/GC/C5GC01937K#!divAbstract-
dc.identifier.urihttp://hdl.handle.net/20.500.11754/30093-
dc.description.abstractIt is widely accepted that membrane technology is a green and sustainable process; however, it is not well known that the membrane fabrication process itself is quite far from green, with more than 50 billion liters of wastewater being generated every year contaminated with toxic solvents such as DMF and NMP. This urgent challenge is often overlooked and recent attempts to improve the sustainability of membrane fabrication have been limited to the replacement of toxic solvents with greener alternatives. Our recent survey from membrane industries indicates that such wastewater contributes to more than 95% of the total waste generated during the membrane fabrication process, and their disposal is considered cumbersome. Hence, recycling wastewater in the membrane industry is a pressing challenge to be resolved to augment the rapidly growing membrane market. In this work, a continuous wastewater treatment process is proposed and the quality of the recycled water was validated through membrane fabrication and performance tests. Seven different classes of adsorbents-graphene, polymers with intrinsic microporosity, imprinted polymers, zeolites, metal organic frameworks, activated carbon, and resins-were evaluated. The isotherm and kinetic behaviors of the best adsorbents have been fully characterized and the adsorbent regenerability without any performance loss has been confirmed for up to 10 wastewater treatment cycles. It has been demonstrated that over 99% of the organic impurities in the wastewater can be successfully removed and the recycled water can be reused without adverse effects on the final membrane performance. The proposed wastewater treatment technique can reduce the process mass intensity (PMI) of membrane fabrication by 99.9% per m(2) of the membrane produced. The required energy duty for different regeneration methods and wastewater treatment methods revealed that the adsorption technology is the most effective method, with the lowest energy requirement of about 1200 kJ per m(2) of the membrane produced.en_US
dc.description.sponsorshipWe want to thank Elisabeth Davenport, Dr Jozsef Kupai, Luca Szabo and Christos Didaskalou, all from the School of Chemical Engineering & Analytical Science, Manchester for their technical help. The authors thank Peter Halasz from the School of Mechanical, Aerospace and Civil Engineering for his artistic help. We would also like to acknowledge the help of Dr Wayne Harrison from the School of Chemistry, Manchester with the preparation of PIM-1, Stephen Worrall, Raghidah Wagia and Samaila Jovial from the School of Chemistry, Manchester, for provision of the MOF samples and Eurocarb Ltd for providing activated carbon samples. The work described in this paper was partially supported by EPSRC under grant number EP/K016946/1. The authors would also like to thank financial support from the Nano Material Technology Development Program (2012M3A7B4949745), the National Research Foundation of the Korean Ministry of Science, ICT and Future Planning.en_US
dc.language.isoenen_US
dc.publisherROYAL SOC CHEMISTRYen_US
dc.subjectORGANIC-SOLVENT NANOFILTRATIONen_US
dc.subjectHOLLOW-FIBER MEMBRANESen_US
dc.subjectINTRINSIC MICROPOROSITYen_US
dc.subjectGAS SEPARATIONen_US
dc.subjectADSORPTIONen_US
dc.subjectFABRICATIONen_US
dc.subjectREMOVALen_US
dc.subjectPOLYMERSen_US
dc.subjectMETALen_US
dc.titleSustainable wastewater treatment and recycling in membrane manufacturingen_US
dc.typeArticleen_US
dc.relation.no12-
dc.relation.volume17-
dc.identifier.doi10.1039/c5gc01937k-
dc.relation.page5196-5205-
dc.relation.journalGREEN CHEMISTRY-
dc.contributor.googleauthorRazali, Mayamin-
dc.contributor.googleauthorKim, Jeong F.-
dc.contributor.googleauthorAttfield, Martin P.-
dc.contributor.googleauthorBudd, Peter M.-
dc.contributor.googleauthorDrioli, Enrico-
dc.contributor.googleauthorLee, Young Moo-
dc.contributor.googleauthorSzekely, Gyorgy-
dc.relation.code2015002777-
dc.sector.campusS-
dc.sector.daehakCOLLEGE OF ENGINEERING[S]-
dc.sector.departmentDEPARTMENT OF ENERGY ENGINEERING-
dc.identifier.pidymlee-
dc.identifier.researcherIDG-5920-2015-
dc.identifier.orcidhttp://orcid.org/0000-0002-5047-3143-
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > ENERGY ENGINEERING(에너지공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE