264 0

일반영향요인과 댓글기반 콘텐츠 네트워크 분석을 통합한 유튜브(Youtube)상의 콘텐츠 확산 영향요인 연구

Title
일반영향요인과 댓글기반 콘텐츠 네트워크 분석을 통합한 유튜브(Youtube)상의 콘텐츠 확산 영향요인 연구
Other Titles
A Study on the Impact Factors of Contents Diffusion in Youtube using Integrated Content Network Analysis
Author
임규건
Keywords
콘텐츠 네트워크; 유투브; 확산 요인; 소셜미디어; 영향 요인; Content Network; Youtube; Difussion Factors; Social Media; Influencing Factor
Issue Date
2015-09
Publisher
한국지능정보시스템학회
Citation
지능정보연구, v. 21, NO 3, Page. 19-36
Abstract
대표적 소셜미디어인 유튜브는 기존 폐쇄형 콘텐츠 서비스와는 다르게 개방형 콘텐츠 서비스로 이용자들의 참여와 공유를 통하여 많은 인기를 유지하고 있다. 콘텐츠 산업에서 중요한 위치를 차지하고 있는 유투브 상의 콘텐츠 확산 요인에 관한 기존의 연구들은 댓글 수 등과 같은 일반적 정보 특성 요인과 조회 수 간에 상관관계 등을 분석하는 것이 대부분이었다. 최근 네트워크 구조를 기반으로 한 연구들도 진행되었으나 대부분 콘텐츠를 이용하는 대상인 구독자나 지인 등을 중심으로 한 인적 관계 네트워크 구조 연구가 대부분이었다. 이에 본 연구에서는 실질적인 콘텐츠를 중심으로 한 네트워크 구조와 일반요인을 통합한 모델을 제시하고 확산요인을 분석하고자 한다. 이를 위해 통합 모델 인과관계 분석과 함께 21,307개의 유튜브 콘텐츠를 콘텐츠 기반 네트워크 구조로 분석하였다. 본 연구를 통해 기존에 알려진 일반적 요인과 네트워크 요인들이 모두 조회수에 영향을 주는 인과관계를 통계적으로 재검증하였으며 통합적으로는 등록자의 구독자 수, 경과시간, 매개 중심성, 댓글 수, 근접 중심성, 클러스터링 계수, 평균 평점 순으로 조회 수에 긍정적인 영향을 미치는 것으로 분석되었다. 하지만 네트워크 요인중 연결정도 중심성과 고유벡터 중심성은 부정적 영향을 주는 것으로 분석되었다. 본 연구를 통하여 유튜브 콘텐츠 확산에 대한 일반영향요인과 구조적인 현상을 함께 규명하였다. 본 연구는 기업들이 유튜브와 같은 콘텐츠 서비스를 통한 온라인 마케팅 활동 시 콘텐츠들의 구조적인 면을 고려할 수 있는 근거를 제공하였으며 음반산업의 수요예측이나 콘텐츠 제작 업체들의 원활한 서비스 제공을 위한 설명력있는 영향요인 및 모델이 될 수 있을 것이다. Social media is an emerging issue in content services and in current business environment. YouTube is the most representative social media service in the world. YouTube is different from other conventional content services in its open user participation and contents creation methods. To promote a content in YouTube, it is important to understand the diffusion phenomena of contents and the network structural characteristics. Most previous studies analyzed impact factors of contents diffusion from the view point of general behavioral factors. Currently some researchers use network structure factors. However, these two approaches have been used separately. However this study tries to analyze the general impact factors on the view count and content based network structures all together. In addition, when building a content based network, this study forms the network structure by analyzing user comments on 22,370 contents of YouTube not based on the individual user based network. From this study, we re-proved statistically the causal relations between view count and not only general factors but also network factors. Moreover by analyzing this integrated research model, we found that these factors affect the view count of YouTube according to the following order; Uploader Followers, Video Age, Betweenness Centrality, Comments, Closeness Centrality, Clustering Coefficient and Rating. However Degree Centrality and Eigenvector Centrality affect the view count negatively. From this research some strategic points for the utilizing of contents diffusion are as followings. First, it is needed to manage general factors such as the number of uploader followers or subscribers, the video age, the number of comments, average rating points, and etc. The impact of average rating points is not so much important as we thought before. However, it is needed to increase the number of uploader followers strategically and sustain the contents in the service as long as possible. Second, we need to pay attention to the impacts of betweenness centrality and closeness centrality among other network factors. Users seems to search the related subject or similar contents after watching a content. It is needed to shorten the distance between other popular contents in the service. Namely, this study showed that it is beneficial for increasing view counts by decreasing the number of search attempts and increasing similarity with many other contents. This is consistent with the result of the clustering coefficient impact analysis. Third, it is important to notice the negative impact of degree centrality and eigenvector centrality on the view count. If the number of connections with other contents is too much increased it means there are many similar contents and eventually it might distribute the view counts. Moreover, too high eigenvector centrality means that there are connections with popular contents around the content, and it might lose the view count because of the impact of the popular contents. It would be better to avoid connections with too powerful popular contents. From this study we analyzed the phenomenon and verified diffusion factors of Youtube contents by using an integrated model consisting of general factors and network structure factors. From the viewpoints of social contribution, this study might provide useful information to music or movie industry or other contents vendors for their effective contents services. This research provides basic schemes that can be applied strategically in online contents marketing. One of the limitations of this study is that this study formed a contents based network for the network structure analysis. It might be an indirect method to see the content network structure. We can use more various methods to establish direct content network. Further researches include more detailed researches like an analysis according to the types of contents or domains or characteristics of the contents or users, and etc.
URI
http://www.dbpia.co.kr/Journal/ArticleDetail/NODE06525494?TotalCount=1&Seq=1&q=((%5B%EC%9D%BC%EB%B0%98%EC%98%81%ED%96%A5%EC%9A%94%EC%9D%B8%EA%B3%BC%20%EB%8C%93%EA%B8%80%EA%B8%B0%EB%B0%98%20%EC%BD%98%ED%85%90%EC%B8%A0%20%EB%84%A4%ED%8A%B8%EC%9B%8C%ED%81%AC%20%EB%B6%84%EC%84%9D%EC%9D%84%20%ED%86%B5%ED%95%A9%ED%95%9C%20%EC%9C%A0%ED%8A%9C%EB%B8%8C(Youtube)%EC%83%81%EC%9D%98%20%EC%BD%98%ED%85%90%EC%B8%A0%20%ED%99%95%EC%82%B0%20%EC%98%81%ED%96%A5%EC%9A%94%EC%9D%B8%20%EC%97%B0%EA%B5%AC%C2%A7coldb%C2%A72%C2%A751%C2%A73%5D))&searchWord=%EC%A0%84%EC%B2%B4%3D%5E%24%EC%9D%BC%EB%B0%98%EC%98%81%ED%96%A5%EC%9A%94%EC%9D%B8%EA%B3%BC%20%EB%8C%93%EA%B8%80%EA%B8%B0%EB%B0%98%20%EC%BD%98%ED%85%90%EC%B8%A0%20%EB%84%A4%ED%8A%B8%EC%9B%8C%ED%81%AC%20%EB%B6%84%EC%84%9D%EC%9D%84%20%ED%86%B5%ED%95%A9%ED%95%9C%20%EC%9C%A0%ED%8A%9C%EB%B8%8C(Youtube)%EC%83%81%EC%9D%98%20%EC%BD%98%ED%85%90%EC%B8%A0%20%ED%99%95%EC%82%B0%20%EC%98%81%ED%96%A5%EC%9A%94%EC%9D%B8%20%EC%97%B0%EA%B5%AC%5E*&searchWordCondition=%EC%9E%90%EB%A3%8C%EC%9C%A0%ED%98%95%3D%5E%24%EC%A0%84%EC%B2%B4%5E*&Multimedia=0&isIdentifyAuthor=0&Collection=0&isFullText=0&specificParam=0&SearchMethod=0&Sort=1&SortType=desc&Page=1&PageSize=50http://hdl.handle.net/20.500.11754/27333
ISSN
2288-4866; 2288-4882
DOI
10.13088/jiis.2015.21.3.19
Appears in Collections:
GRADUATE SCHOOL OF BUSINESS[S](경영전문대학원) > BUSINESS ADMINISTRATION(경영학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE