92 69

Full metadata record

DC FieldValueLanguage
dc.contributor.author양철수-
dc.date.accessioned2024-04-03T08:09:31Z-
dc.date.available2024-04-03T08:09:31Z-
dc.date.issued2022-11-22-
dc.identifier.citationBIOMATERIALS SCIENCEen_US
dc.identifier.issn2047-4830en_US
dc.identifier.issn2047-4849en_US
dc.identifier.urihttps://information.hanyang.ac.kr/#/eds/detail?an=000892384100001&dbId=edswscen_US
dc.identifier.urihttps://repository.hanyang.ac.kr/handle/20.500.11754/189580-
dc.description.abstractThe level of collagen production critically determines skin wound contraction. If an intelligent skin drug delivery technology that enables collagen production in a specific wound skin area is developed, a breakthrough in wound healing treatment would be expected. However, such an intelligent drug delivery technology has not yet been developed as much as in the field of anticancer therapy. In this study, we propose a smart drug delivery system using polymeric nanovehicles (PNVs), in which the periphery is conjugated with a fibroblast-targeting collagen-derived peptide, KTTKS (Lys-Thr-Thr-Lys-Ser). We showed that surface engineering of PNVs with simultaneous PEGylation and peptide patching improved the dispersibility of PNVs, while promoting selective cellular uptake to fibroblasts via PAR-2 receptor-mediated endocytosis. In vitro collagen production and in vivo wound healing assays revealed that curcumin-loaded fibroblast-targeting PNVs significantly enhanced collagen production and wound healing activities, thus promising effective skin tissue regeneration.en_US
dc.description.sponsorshipThis work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. NRF-2021R1A4A1032782 and NRF-2021R1A4A5032463) and by the INNOPOLIS Foundation of Korea (No. 2021-DD-UP-0369).en_US
dc.languageen_USen_US
dc.publisherROYAL SOC CHEMISTRYen_US
dc.relation.ispartofseriesv. 11, NO 2;450-460-
dc.titleFibroblast-targeting polymeric nanovehicles to enhance topical wound healing through promotion of PAR-2 receptor-mediated endocytosisen_US
dc.typeArticleen_US
dc.relation.no2-
dc.relation.volume11-
dc.identifier.doi10.1039/d2bm01357fen_US
dc.relation.page450-460-
dc.relation.journalBIOMATERIALS SCIENCE-
dc.contributor.googleauthorLee, Yousong-
dc.contributor.googleauthorKim, Seulgi-
dc.contributor.googleauthorSeo, Jihye-
dc.contributor.googleauthorKim, Hyo Keun-
dc.contributor.googleauthorHan, Yeong Pin-
dc.contributor.googleauthorPark, Eun Ju-
dc.contributor.googleauthorPark, Jin Oh-
dc.contributor.googleauthorYang, Chul-Su-
dc.contributor.googleauthorKim, Jin Woong-
dc.relation.code2023038357-
dc.sector.campusE-
dc.sector.daehakCOLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY[E]-
dc.sector.departmentDEPARTMENT OF MEDICINAL AND LIFE SCIENCES-
dc.identifier.pidchulsuyang-


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE