72 0

Research for Assembly Weighting Factors of Ex-Core Detector Based on Forward Neutron Transport Analysis Using DORT

Title
Research for Assembly Weighting Factors of Ex-Core Detector Based on Forward Neutron Transport Analysis Using DORT
Other Titles
DORT를 이용한 중성자 전방수송해석 기반 노외계측기 핵연료집합체 가중함수에 대한 연구
Author
최철희
Alternative Author(s)
ChulHeeChoi
Advisor(s)
Sung Joong Kim
Issue Date
2024. 2
Publisher
한양대학교 대학원
Degree
Master
Abstract
The nuclear fuel assembly weighting factor is a value that indicates the degree to which neutrons generated from nuclear fission of each nuclear fuel assembly loaded in the core contribute to the current signal of the ex-core detector, and depends on the location of the nuclear fuel assembly. The assembly weighting factor, together with the axial shape annealing function, is used in the ex-core detector calibration process. The ex-core detector is an important core protection system that continuously monitors the reactor power during power plant operation and stops the reactor when necessary. Therefore, the assembly weighting factor, which is directly used to calibrate ex-core detector, is a very important design factor for safe operation of the power plant. In this study two sets of assembly weighting factors were calculated. One was calculated on the basis of uniform rod-by-rod power distribution which means all fuel rods has the same power, and the other set was calculated on the basis of non-uniform rod-by-rod power distribution. These two sets of assembly weighting factors were calculated through forward transport analysis using the deterministic neutron transport analysis code DORT and the BUGLE96 cross-sectional library for the OPR1000 nuclear power plant. Among the results of this study, assembly weighting factors calculated using uniform rod-by-rod power distribution were compared with two previous studies that calculated the assembly weighting factor based on uniform rod-by-rod power distribution and adjoint transport analysis. In the previous studies, the assembly weighting factor was calculated only for cases where all fuel rods had the same power distribution without considering the rod-by-rod power distribution. However, in this study, the assembly weighting factor went beyond this and took into account the power distribution of the fuel rods. When comparing the results of this study with the results of previous studies, it was confirmed that this study is in better agreement with the previous study using the MCNP code than the previous study using the DOT code. Two sets of assembly weighting factors (uniform and non-uniform rod-by-rod power distribution) calculated in this study were also compared with each other. The results of non-uniform power distribution showed a decrease of about 6% at the maximum assembly weight factor location, and the sum of the six assemblies located on the outside of the core also showed a decrease of about 3%. Currently, commercial reactor design uses assembly weighting factor that does not take into account the power distribution for each fuel rod, but if this is taken into consideration in the future, a more accurate nuclear fuel assembly weighting factor can be derived and it will contribute to the safe operation of the reactor. In addition, it is believed that the results of this study can be used in the design of pressurized water reactor such as OPR1000, APR1400 and Small Modular Reactor.|핵연료집합체 가중함수는 노심에 장전된 각각의 핵연료집합체의 핵분열로 발생한 중성자가 노외계측기에 도달함으로써 노외계측기 전류 신호에 기여하는 정도를 나타내는 값으로서 핵연료집합체 위치에 의존한다. 핵연료집합체 가중함수는 축방향 형상처리함수와 함께 노외계측기 교정 과정에 사용된다. 노외계측기는 발전소 가동 중 원자로 출력을 연속적으로 감시하고 필요 시 원자로를 정지시키는 중요한 노심보호 계통이다. 따라서 노외계측기 교정에 직접 사용되는 핵연료집합체 가중함수는 발전소 안전 운전에 매우 중요한 설계 인자이다. 본 연구에서는 OPR1000 원전에 대해 결정론적 중성자 수송해석 코드인 DORT 와 BUGLE96 단면적 라이브러리를 이용하여 전방수송해석을 통해 가중함수를 계산하고, 수반해석을 바탕으로 가중함수를 계산한 선행연구 두 가지 결과와 비교하였다. 선행연구에서는 각 핵연료집합체 내 핵연료 봉 별 출력분포를 고려하지 않고 모두 동일한 값을 갖는 경우에 대해서만 가중함수를 계산하였으나 본 연구에서는 이 뿐만 아니라 실제 상업용 원전 수송해석에서 사용하는 핵연료봉 출력분포를 고려한 가중함수도 함께 계산하고 결과를 고찰하였다. 본 연구에서 계산한 핵연료집합체 가중함수를 선행연구 결과와 비교할 때 선행 연구 중 DOT 코드를 이용한 수반해석 결과 보다 MCNP 코드를 이용한 수반해석 결과와 잘 일치함을 확인하였다. 핵연료집합체 내 봉 별 출력분포를 고려하여 계산한 결과에서는 최대 가중함수위치에서 6 % 정도 감소하는 것으로 나타났으며, 노심 외곽에 위치한 6 개 집합체에 대한 합의 경우도 3 % 정도 감소하는 것으로 나타났다. 현재 상업용 노심 설계에서는 봉 별 출력분포를 고려하지 않은 가중함수를 사용하고 있으나, 향 후 이를 고려한다면 더욱 정확한 핵연료집합체 가중함수를 도출할 수 있고, 원자로 안전 운전에도 기여할 수 있을 것이다. 또한, 본 연구 결과는 OPR1000, APR1400 그리고 소형원전 등 가압경수형 원전 설계에 활용할 수 있을 것으로 판단된다.
URI
http://hanyang.dcollection.net/common/orgView/200000721872https://repository.hanyang.ac.kr/handle/20.500.11754/188697
Appears in Collections:
GRADUATE SCHOOL[S](대학원) > NUCLEAR ENGINEERING(원자력공학과) > Theses (Master)
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE