314 0

Surface functionalization of biomaterials with epigallocatechin gallate (EGCG) for tissue engineering applications

Title
Surface functionalization of biomaterials with epigallocatechin gallate (EGCG) for tissue engineering applications
Author
이상민
Alternative Author(s)
Sangmin Lee
Advisor(s)
신흥수
Issue Date
2023. 8
Publisher
한양대학교
Degree
Doctor
Abstract
플라보노이드는 과일, 채소 및 일부 음료에서 널리 분포하는 식물 보조 대사 물질의 다양한 그룹으로 폴리페놀 구조에 기인한 건강 증진 효과로 높이 평가되며, 의학, 제약 및 화장품 산업에서 일반적으로 사용되고 있다. 특히, 녹차에서 발견되는 플라보노이드 중 하나인 에피갈로카테킨 갈레이트는 골 생성 효과 촉진, 파골세포 분화 저해 및 염증 감소와 같은 다양한 기능으로 인해 조직공학 응용 분야에서 유망한 잠재력을 가지고 있으며, 금속이온과 수소 결합, 파이-파이 스태킹 및 양이온-파이 상호작용을 통해 금속-페놀 네트워크를 형성할 수 있다고 알려져 있다. 현재 조직공학적 응용에서 제한사항으로 지적되는 부분은 생체 재료 이식이나 세포 이식 시 과도하게 생성되는 반응성 산소 종에 따른 치료 효과 저해, 골 재생에서 중요한 역할을 하는 금속 이온을 체내에 안정적으로 전달하기 어려움, 줄기세포의 3차원 세포구형체 내 산소의 확산 감소로 인한 괴사성 중심 형성 등이 있는데, 이러한 문제점을 해결할 수 있는 생체재료의 표면기능화 방법이 필요했다. 본 연구에서는 금속-페놀 네트워크를 이용하여 에피갈로카테킨 갈레이트의 생물학적 장점을 생체재료의 표면 기능화로 활용하는 전략으로 기존 문제점을 극복하고자 하였다. 폴리카프로락톤 필름 표면에 에피갈로카테킨 갈레이트 코팅을 적용하여 전체 페놀 함량에 따라 친수성 및 항산화능력이 증가하였으며, 구조 유지를 위한 페놀의 수산화그룹 및 파이전자 증가와 함께 공유결합 안정화를 통한 과산화수소를 직접 제거하는 것을 밝혀냈다. 또한, 과산화수소 처리에 대한 인간 지방유래 줄기세포의 부착효율, 부착면적 및 생존율을 증가시키고 세포 신호를 자극하여 세포 사멸 유전자를 감소시키며 항산화 효소 발현을 증진시키는 것을 확인했다. 또한, 티타늄 합금의 임플란트 표면에서 에피갈로카테킨 갈레이트와 마그네슘 이온의 금속-페놀 네트워크를 형성하여 안정적으로 전달이 가능한 것을 확인했으며, 인간 지방유래 줄기세포의 알칼리성 인산분해효소 활성, 골형 유전자 발현 및 미네랄화의 유의미한 증가, 마그네슘 이온의 신호전달 억제제의 처리를 통해 에피갈로카테킨 갈레이트와 마그네슘 이온의 시너지효과가 있다는 것을 밝혀냈다. 또한, 에피갈로카테킨 갈레이트와 나트륨, 칼슘, 마그네슘, 스트론튬 이온의 다양한 금속들과의 조합을 통해 금속 이온 종류에 따른 혈관화 된 골 조직재생 가능성을 확인했다. 마지막으로, 에피갈로카테킨 갈레이트 코팅을 폴리락틱산 섬유에 적용하여 줄기세포 스페로이드를 형성하였을 때, 구 형태 유지와 개선된 생존율 및 항산화 효과를 보였다. 또한, 스페로이드 내에서 구조적 프레임워크를 제공하기 위해 표면에 구멍이 있는 폴리카프로락톤 섬유를 제작하고 에피갈로카테킨 갈레이트 코팅을 진행하였을 때, 지방유래 줄기세포의 향상된 증식과 확산을 확인했다. 결론적으로, 금속-페놀 네트워크를 통한 에피갈로카테킨 갈레이트의 생체재료 표면 기능화가 조직공학적 응용에서 다양하게 활용될 수 있는 가능성을 보여준다. |Flavonoids are a diverse group of plant secondary metabolites that are widely distributed in fruits, vegetables, and certain beverages. Due to their polyphenolic structure, flavonoids are highly valued for their health-promoting effects, and they are commonly used in medicinal, pharmaceutical, and cosmetic applications. Among them, epigallocatechin gallate (EGCG), a flavonoid found in green tea, has shown significant potential in various tissue engineering applications, including promoting osteogenic effects, inhibiting osteoclastogenesis, and reducing inflammation. Recent studies have revealed that phenolic molecules can form a network on the surface of materials, which can be applied as a multi-functional coating molecule. EGCG, in particular, can readily form a metal-phenolic network (MPN) with cationic metal ions through hydrogen bonding, - stacking, and cation- interactions by incubating the sample in a buffer solution containing metal ions. The current limitations in tissue engineering applications include the adverse effects of reactive oxygen species (ROS) generated during the transplantation of biomaterials or cells, difficulty in stably delivering metal ions that play an important role in bone regeneration, and the formation of necrotic cores due to the gradual decrease in oxygen diffusion in 3D multicellular spheroids. Therefore, a surface functionalization method of biomaterials that can overcome these issues is needed. In here, this thesis aimed to overcome the existing problems by utilizing the biological benefits of EGCG through the surface functionalization of biomaterials via MPN formation strategy. First, biomaterial surfaces were coated with antioxidant EGCG and metal ions, and evaluated their anti-oxidative and ROS scavenging properties. It was revealed that EGCG-coating on polycaprolactone (PCL) film surface increased hydrophilicity and anti-oxidative properties as a function of total phenol content (TPC) potentially due to the increase in phenolic -OH and -electrons from structural maintenance and directly removed the hydrogen peroxide (H2O2) by resonance-stabilization. Furthermore, EGCG-coated PCL film increased attachment, spreading area, and viability of human adipose-derived stem cells (hADSCs) against H2O2 treatment while stimulated the cellular signaling to reduce apoptotic gene and enhance anti-oxidative enzyme expression. Next, I developed a titanium alloy (Ti-6Al-4V, Ti) coated with EGCG and magnesium ions (Mg2+) in a MPN formation. Specifically, Ti discs were coated with EGCG in MgCl2 by controlling their concentrations and pH, with the amount of coating increasing with the coating time. An in vitro culture of hADSCs on the EGCG-Mg2+-coated Ti showed significantly enhanced ALP activity, mRNA expression of osteogenic markers, and mineralization. Treatment with 2-APB, an inhibitor of Mg2+ signaling, confirmed that the enhancement of osteogenic differentiation in the hADSCs was caused by the synergistic influence of EGCG and Mg2+. The EGCG-Mg2+ coating significantly reduced the osteoclastic maturation of Raw264.7 cells, reducing tartrate-resistant acid phosphatase activity. Finally, Ti implants onto rabbit tibias, the bone–implant contact (%) was greater on the EGCG-Mg2+-coated Ti implants (8.1 ± 4.3) than on the uncoated implants (4.4 ± 2.0). Furthermore, It was confirmed that the effect of coating a 3D-printed PCL scaffold surface with a combination of EGCG and various bioactive metal ions (Na+, Ca2+, Mg2+, Sr2+) on vascularized bone regeneration. Finally, I applied EGCG coating on the surface of poly-L-lactic acid (PLLA) fibers. Spheroids incorporating EGCG-coated PLLA fibers were able to maintain their shape and showed improved viability and anti-oxidative activities in response to H2O2-induced oxidative stress than control spheroids. Furthermore, PCL fibers with pores and EGCG coating on their surface to provide a structural framework within the spheroids and investigated their ability to mitigate diffusional limitation and control over the proliferation of hADSCs is engineered. The DNA content of composite spheroids prepared from fibers and hADSCs decreased in unadjusted cells (1224 ± 134 ng), in those with fibers with a smooth surface (SF) (1447 ± 331 ng), and in those EGCG-coated with SF (E-SF) (1437 ± 289 ng). Cells with fibers with pores on the surface (PF) (2020 ± 32 ng) and those with EGCG-coated PF (E-PF) (1911 ± 80 ng) increased after 7 days of culture, with a significantly greater number of proliferating cells (29 ± 8% and 30 ± 8%, respectively). Taken together, I proposed that EGCG coating via MPN can enable multi-functional coating of biomaterial surfaces. Through EGCG coating strategy, I demonstrated the potential for ROS control and vascularized bone tissue regeneration in tissue engineering, as well as the diverse applications that can be achieved in a 3D culture system
URI
http://hanyang.dcollection.net/common/orgView/200000683931https://repository.hanyang.ac.kr/handle/20.500.11754/187255
Appears in Collections:
GRADUATE SCHOOL[S](대학원) > BIOENGINEERING(생명공학과) > Theses (Ph.D.)
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE