206 0

A stochastic model for the optimal batch size in multi-step operations with process and product variability

Title
A stochastic model for the optimal batch size in multi-step operations with process and product variability
Author
신동민
Keywords
process variability; batch size; tolerance stacking; stochastic deviation
Issue Date
2009-01
Publisher
TAYLOR & FRANCIS LTD
Citation
INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, v. 47, NO. 14, article no. PII 792109828, Page. 3919-3936
Abstract
Virtually all manufacturing processes are subject to variability, an inherent characteristic of most production processes. No two parts can ever be exactly the same in terms of their dimensions. For machining processes such as drilling, milling, and lathing, overall variability is caused in part by machine tools, tooling, fixtures and workpiece material. Since variability, which can be accumulated from tolerance stacking, can result in defective parts the number of parts produced in a batch is limited. When there are too many parts in a batch, the likelihood of producing all acceptable parts in a batch decreases due to the increased tolerances. On the other hand, too small a batch size incurs an increase of manufacturing costs due to frequent setups and tool replacements, whereas the likelihood of acceptable parts increases. To address this challenge, we present a stochastic model for determining the optimal batch size where we consider part-to-part variation in terms of tool wear, which tends to be proportional to batch size. In this paper, a mathematical model is constructed based on the assumption that the process used for producing preceding parts affects the state of subsequent parts in a probabilistic manner.
URI
https://www.tandfonline.com/doi/full/10.1080/00207540701810778https://repository.hanyang.ac.kr/handle/20.500.11754/183730
ISSN
0020-7543;1366-588X
DOI
10.1080/00207540701810778
Appears in Collections:
COLLEGE OF ENGINEERING SCIENCES[E](공학대학) > INDUSTRIAL AND MANAGEMENT ENGINEERING(산업경영공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE