402 154

Galvanic corrosion inhibition from aspect of bonding orbital theory in Cu/Ru barrier CMP

Title
Galvanic corrosion inhibition from aspect of bonding orbital theory in Cu/Ru barrier CMP
Author
백운규
Issue Date
2021-10
Publisher
Nature Research
Citation
Scientific Reports, v. 11, NO. 1, article no. 21214, Page. 1-10
Abstract
In this report, the galvanic corrosion inhibition between Cu and Ru metal films is studied, based on bonding orbital theory, using pyridinecarboxylic acid groups which show different affinities depending on the electron configuration of each metal resulting from a π-backbonding. The sp2 carbon atoms adjacent to nitrogen in the pyridine ring provide π-acceptor which forms a complex with filled d-orbital of native oxides on Cu and Ru metal film. The difference in the d-orbital electron density of each metal oxide leads to different π-backbonding strength, resulting in dense or sparse adsorption on native metal oxides. The dense adsorption layer is formed on native Cu oxide film due to the full-filled d-orbital electrons, which effectively suppresses anodic reaction in Cu film. On the other hand, only a sparse adsorption layer is formed on native Ru oxide due to its relatively weak affinity between partially filled d-orbital and pyridine groups. The adsorption behaviour is investigated through interfacial interaction analysis and electrochemical interaction evaluation. Based on this finding, the galvanic corrosion behaviour between Cu and Ru during chemical mechanical planarization (CMP) processing has been controlled.
URI
https://www.nature.com/articles/s41598-021-00689-6https://repository.hanyang.ac.kr/handle/20.500.11754/178351
ISSN
2045-2322
DOI
10.1038/s41598-021-00689-6
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > ENERGY ENGINEERING(에너지공학과) > Articles
Files in This Item:
Galvanic corrosion inhibition from aspect of bonding orbital theory in CuRu barrier CMP.pdfDownload
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE