113 0

Insights into the dynamics of blood conveying gold nanoparticles on a curved surface when suction, thermal radiation, and Lorentz force are significant: The case of Non-Newtonian Williamson fluid

Title
Insights into the dynamics of blood conveying gold nanoparticles on a curved surface when suction, thermal radiation, and Lorentz force are significant: The case of Non-Newtonian Williamson fluid
Author
육세진
Keywords
Blood-gold nanofluid; Dynamics on a curved surface; Lorentz force; Non-Newtonian Williamson fluid; Suction and thermal radiation
Issue Date
2022-03
Publisher
Elsevier B.V.
Citation
Mathematics and Computers in Simulation, v. 193, Page. 250-268
Abstract
The motion of blood conveying gold nanoparticles on a curved surface when suction, thermal radiation, and Lorentz force are significant is explored in this report with the aim to announce the increasing effects of Williamson fluid parameter, volume fraction, radius of curvature, thermal radiation, and Lorentz force on such a transport phenomenon. This report was designed to explore the upper and lower solutions of the model suitable to study the enhancement of the aforementioned variables. The similarity solution of the dimensional governing equation was sought using the appropriate similarity variables. These dimensionless forms of ODEs are numerically solved using the 3-stage Lobatto formula, also known as bvp4c. The validation of the numerical scheme was considered. The drag force decelerates and then upsurges owing to the volume fraction of nanoparticles in the corresponding UBS and reduces in LBS, while the rate of heat transfer drastically decreases. The temperature and velocity gradient escalate and decelerate, respectively for both branches of results owing to the effect of higher curvature parameter. The temperature distribution decelerates in both outcomes due to the strength of mass suction while the velocity is​ weakened in the lower branch solution (LBS) and augments in the upper branch solution (UBS).
URI
https://www.sciencedirect.com/science/article/pii/S0378475421003761?via%3Dihubhttps://repository.hanyang.ac.kr/handle/20.500.11754/177818
ISSN
0378-4754;1872-7166
DOI
10.1016/j.matcom.2021.10.014
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > MECHANICAL ENGINEERING(기계공학부) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE