198 235

Investigation of the Relation between Temperature and M13 Phage Production via ATP Expenditure

Title
Investigation of the Relation between Temperature and M13 Phage Production via ATP Expenditure
Author
이주헌
Keywords
M13 bacteriophage; batch culture; liter-scale production; temperature; coarse-grained modeling; adenosine triphosphate; specific growth rate; ribosomal efficiency
Issue Date
2022-05
Publisher
MDPI AG
Citation
Processes, v. 10.0, NO. 5, article no. 962, Page. 1-15
Abstract
M13 bacteriophage is a promising biomolecule capable of various bionano and material science applications. The biomaterial can self-assemble into matrices to fabricate bioscaffolds using high phage concentration and high phage purity. Previous studies aimed to acquire these conditions in large-scale phage production and have identified the optimal culture temperature range at 28-31 degrees C. However, explanations as to why this temperature range was optimal for phage production is absent from the work. Therefore, in this study, we identified the relation between culture temperature and M13 phage production using ATP expenditure calculations to comprehend the high yield phage production at the optimal temperature range. We extended a coarse-grained model for the evaluation of phage protein and ribosomal protein synthesis with the premise that phage proteins (a ribosomal protein) are translated by bacterial ribosomes in E. coli through expenditure of ATP energy. By comparing the ATP energy for ribosomal protein synthesis estimated using the coarse-grained model and the experimentally calculated ATP expenditure for phage production, we interpreted the high phage yield at the optimal temperature range and recognized ATP analysis as a reasonable method that can be used to evaluate other parameters for phage production optimization.
URI
https://www.proquest.com/docview/2670383118?accountid=11283https://repository.hanyang.ac.kr/handle/20.500.11754/177630
ISSN
2227-9717
DOI
10.3390/pr10050962
Appears in Collections:
COLLEGE OF ENGINEERING SCIENCES[E](공학대학) > BIONANO ENGINEERING(생명나노공학과) > Articles
Files in This Item:
86419_이주헌.pdfDownload
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE