373 93

Full metadata record

DC FieldValueLanguage
dc.contributor.author노미나-
dc.date.accessioned2022-10-17T05:39:41Z-
dc.date.available2022-10-17T05:39:41Z-
dc.date.issued2021-01-
dc.identifier.citationBMC BIOINFORMATICS, v. 22, no. 1, article no. 25, page. 1-12en_US
dc.identifier.issn1471-2105en_US
dc.identifier.urihttps://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-020-03933-4en_US
dc.identifier.urihttps://repository.hanyang.ac.kr/handle/20.500.11754/175466-
dc.description.abstractBackground: Diverse microbiome communities drive biogeochemical processes and evolution of animals in their ecosystems. Many microbiome projects have demonstrated the power of using metagenomics to understand the structures and factors influencing the function of the microbiomes in their environments. In order to characterize the effects from microbiome composition for human health, diseases, and even ecosystems, one must first understand the relationship of microbes and their environment in different samples. Running machine learning model with metagenomic sequencing data is encouraged for this purpose, but it is not an easy task to make an appropriate machine learning model for all diverse metagenomic datasets. Results: We introduce MegaR, an R Shiny package and web application, to build an unbiased machine learning model effortlessly with interactive visual analysis. The MegaR employs taxonomic profiles from either whole metagenome sequencing or 16S rRNA sequencing data to develop machine learning models and classify the samples into two or more categories. It provides various options for model fine tuning throughout the analysis pipeline such as data processing, multiple machine learning techniques, model validation, and unknown sample prediction that can be used to achieve the highest prediction accuracy possible for any given dataset while still maintaining a user-friendly experience. Conclusions: Metagenomic sample classification and phenotype prediction is important particularly when it applies to a diagnostic method for identifying and predicting microbe-related human diseases. MegaR provides various interactive visualizations for user to build an accurate machine-learning model without difficulty. Unknown sample prediction with a properly trained model using MegaR will enhance researchers to identify the sample property in a fast turnaround time.en_US
dc.description.sponsorshipThe authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article. TA is supported by National Science Foundation (Accession ID: 1564894) and Saint Louis University President's Research Fund. MR is supported by the Collaborative Genome Program of the Korea Institute of Marine Science and Technology Promotion (KIMST), funded by the Ministry of Oceans and Fisheries (MOF) [No. 20180430]. The funders had no role in the development of this software or writing of the manuscript.en_US
dc.language.isoenen_US
dc.publisherBMCen_US
dc.subjectMetagenomics; Machine learning; R-package; Phenotype prediction; Sample classifcationen_US
dc.titleMegaR: An Interactive R Package for Rapid Sample Classification and Phenotype Prediction using Metagenome Profiles and Machine Learningen_US
dc.typeArticleen_US
dc.identifier.doi10.1186/s12859-020-03933-4en_US
dc.relation.page1-12-
dc.relation.journalBMC BIOINFORMATICS-
dc.contributor.googleauthorDhungel, Eliza-
dc.contributor.googleauthorMreyoud, Yassin-
dc.contributor.googleauthorGwak, Ho-Jin-
dc.contributor.googleauthorRajeh, Ahmad-
dc.contributor.googleauthorRho, Mina-
dc.contributor.googleauthorAhn, Tae-Hyuk-
dc.relation.code2021002313-
dc.sector.campusS-
dc.sector.daehakCOLLEGE OF ENGINEERING[S]-
dc.sector.departmentSCHOOL OF COMPUTER SCIENCE-
dc.identifier.pidminarho-


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE