198 0

The corrosion inhibition and adsorption behavior of mercaptobenzimidazole and bis-mercaptobenzimidazole on carbon steel in 1.0 M HCl: Experimental and computational insights

Title
The corrosion inhibition and adsorption behavior of mercaptobenzimidazole and bis-mercaptobenzimidazole on carbon steel in 1.0 M HCl: Experimental and computational insights
Author
하산 르가즈
Keywords
Corrosion inhibition; Mercaptobenzimidazole; Nbo; Carbon steel; Molecular dynamics
Issue Date
2021-04
Publisher
ELSEVIER
Citation
SURFACES AND INTERFACES, v. 24, Page. 101095-101095
Abstract
Mercaptobenzimidazoles are an important class of biologically active compounds and one of the most frequently encountered heterocycles in industrial and medicinal chemistry. Herein, bis-mercaptobenzimidazole (bis-MBI) has been synthesized and characterized, in the aim to investigate and compare its corrosion inhibition performance with mercaptobenzimidazole (MBI) for carbon steel (CS) in 1.0 M HCl. Investigations were carried out by combining electrochemical and surface characterization techniques with computational calculations. Experimental results revealed that tested molecules have good inhibition effects against CS corrosion with bis-MBI showing the highest inhibition efficiency (92% at 1 mM). Potentiodynamic polarization measurements displayed that both inhibitors showed high cathodic effects, adsorbed on steel surface through physical and chemical interactions following a Langmuir isotherm model. Natural bond orbitals (NBO) analysis was conducted to evaluate donor-acceptor (D-A) interactions and nature of bonding in tested molecules. In addition, the adsorption of inhibitors' molecules on steel surface was simulated by molecular dynamics (MD) in a simulation cell that includes all corrosive species. Results from this work showed that bis-mercaptobenzimidazole can be used as effective corrosion inhibitor for carbon steel.
URI
https://www.sciencedirect.com/science/article/pii/S2468023021001723https://repository.hanyang.ac.kr/handle/20.500.11754/171769
ISSN
2468-0230
DOI
10.1016/j.surfin.2021.101095
Appears in Collections:
OFFICE OF ACADEMIC AFFAIRS[E](교무처) > Center for Creative Convergence Education(창의융합교육원) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE