Full metadata record

DC FieldValueLanguage
dc.contributor.author천병구-
dc.date.accessioned2022-05-25T01:10:04Z-
dc.date.available2022-05-25T01:10:04Z-
dc.date.issued2020-10-
dc.identifier.citationPHYSICAL REVIEW D, v. 102, no. 7, article no. 071103en_US
dc.identifier.issn2470-0010-
dc.identifier.issn2470-0029-
dc.identifier.urihttps://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.071103-
dc.identifier.urihttps://repository.hanyang.ac.kr/handle/20.500.11754/171152-
dc.description.abstractUsing 980 fb(-1) of data collected with the Belle detector operating at the KEKB asymmetric-energy e(+) e(-) collider, we report a study of the electromagnetic decays of excited charmed baryons Xi(c)(2790) and Xi(c)(2815). A clear signal (8.6 standard deviations) is observed for Xi(c)(2815)(0) -˃ Xi(0)(c)gamma, and we measure: B[Xi(c)(2815)(0) -˃ Xi(0)(c)gamma]/B[Xi(c)(2815)(0) -˃ Xi(c)(2645)(+)pi(-) -˃ Xi(0)(c)pi(+)pi(-)] = - 0.41 +/- 0.05 +/- 0.03. We also present evidence (3.8 standard deviations) for the similar decay of the Xi(c)(2790)(0) and measure:B[Xi(c)(2790)(0) -˃ Xi(0)(c)gamma]/B[Xi(c)(2790)(0) -˃ Xi(c)'(+)pi(-) -˃ Xi(+)(c)gamma pi(-)] = 0.13 +/- 0.03 +/- 0.02. The first quoted uncertainties are statistical and the second systematic. We find no hint of the analogous decays of the Xi(c)(2815)(+) and Xi(c)(2790)(+) baryons and set upper limits at the 90% confidence level of: B[Xi(c)(2815)(0) -˃ Xi(0)(c)gamma]/B[Xi(c)(2815)(0) -˃ Xi(c)(2645)(0)pi(+) -˃ Xi(+)(c)pi(-)pi(+)] ˂ 0.09, and B[Xi(c)(2790)(+) -˃ Xi(0)(c)gamma]/B[Xi(c)(2815)(+) -˃ Xi(c)'(0)pi(+) -˃ Xi(0)(c)gamma pi(+)] ˂ 0.06. Approximate values of the partial widths of the decays are extracted, which can be used to discriminate between models of the underlying quark structure of these excited states.en_US
dc.description.sponsorshipWe thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; and the KEK computer group, and the Pacific Northwest National Laboratory (PNNL) Environmental Molecular Sciences Laboratory (EMSL) computing group for strong computing support; and the National Institute of Informatics, and Science Information NETwork 5 (SINET5) for valuable network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau-Lepton Physics Research Center of Nagoya University; the Australian Research Council including Grants No. DP180102629, No. DP170102389, No. DP170102204, No. DP150103061, No. FT130100303; Austrian Science Fund (FWF); the National Natural Science Foundation of China under Contracts No. 11435013, No. 11475187, No. 11521505, No. 11575017, No. 11675166, No. 11705209; Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS), Grant No. QYZDJ-SSW-SLH011; the CAS Center for Excellence in Particle Physics (CCEPP); the Shanghai Pujiang Program under Grant No. 18PJ1401000; the Ministry of Education, Youth and Sports of theCzech Republic under Contract No. LTT17020; the Carl Zeiss Foundation, the Deutsche Forschungsgemeinschaft, the Excellence Cluster Universe, and the VolkswagenStiftung; the Department of Science and Technology of India; the Istituto Nazionale di Fisica Nucleare of Italy; National Research Foundation (NRF) of Korea Grants No. 2016R1D1A1B01010135, No. 2016R1D1A1B02012900, No. 2018R1A2B3003643, No. 2018R1A6A1A06024970, No. 2018R1D1A1B07047294, No. 2019K1A3A7A09033840, No. 2019R1I1A3A01058933; Radiation Science Research Institute, Foreign Large-size Research Facility Application Supporting project, the Global Science Experimental Data Hub Center of the Korea Institute of Science and Technology Information and KREONET/GLORIAD; the Polish Ministry of Science and Higher Education and the National Science Center; the Ministry of Science and Higher Education of the Russian Federation, Agreement No. 14.W03.31.0026; University of Tabuk research Grants No. S-1440-0321, No. S-0256-1438, and No. S-0280-1439 (Saudi Arabia); the Slovenian Research Agency; Ikerbasque, Basque Foundation for Science, Spain; the Swiss National Science Foundation; the Ministry of Education and the Ministry of Science and Technology of Taiwan; and the United States Department of Energy and the National Science Foundation.en_US
dc.language.isoenen_US
dc.publisherAMER PHYSICAL SOCen_US
dc.titleStudy of electromagnetic decays of orbitally excited Xi(c) baryonsen_US
dc.typeArticleen_US
dc.relation.no7-
dc.relation.volume102-
dc.identifier.doi10.1103/PhysRevD.102.071103-
dc.relation.page71103-71103-
dc.relation.journalPHYSICAL REVIEW D-
dc.contributor.googleauthorYelton, J.-
dc.contributor.googleauthorAdachi, I-
dc.contributor.googleauthorAhn, J. K.-
dc.contributor.googleauthorAihara, H.-
dc.contributor.googleauthorAl Said, S.-
dc.contributor.googleauthorAsner, D. M.-
dc.contributor.googleauthorAushev, T.-
dc.contributor.googleauthorAyad, R.-
dc.contributor.googleauthorBabu, V-
dc.contributor.googleauthorCheon, B. G.-
dc.relation.code2020048844-
dc.sector.campusS-
dc.sector.daehakCOLLEGE OF NATURAL SCIENCES[S]-
dc.sector.departmentDEPARTMENT OF PHYSICS-
dc.identifier.pidbgcheon-


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE