315 0

Full metadata record

DC FieldValueLanguage
dc.contributor.author이상욱-
dc.date.accessioned2022-04-06T00:29:11Z-
dc.date.available2022-04-06T00:29:11Z-
dc.date.issued2021-11-
dc.identifier.citationACS APPLIED MATERIALS & INTERFACES, v. 13, NO 45, Page. 53725-53735en_US
dc.identifier.issn19448244-
dc.identifier.urihttps://pubs.acs.org/doi/10.1021/acsami.1c13694-
dc.identifier.urihttps://repository.hanyang.ac.kr/handle/20.500.11754/169740-
dc.description.abstractThe oxygen evolution reaction (OER) plays a key role in determining the performance of overall water splitting, while a core technological consideration is the development of cost-effective, efficient, and durable catalysts. Here, we demonstrate a robust reduced Fe-oxide@ NiCo2O4 bilayered non-precious-metal oxide composite as a highly efficient OER catalyst in an alkaline medium. A bilayered oxide composite film with an interconnected nanoflake morphology (Fe2O3@NiCo2O4) is reduced in an aqueous NaBH4 solution, which results in a mosslike Fe3O4@NiCo2O4 (reduced Fe-oxide@NiCo2O4; rFNCO) nanostructured film with an enhanced electrochemical surface area. The rFNCO film demonstrates an outstanding OER activity with an extraordinary low overpotential of 189 mV at 10 mA cm−2 (246 mV at 100 mA cm−2 ) and a remarkably small Tafel slope of 32 mV dec−1 . The film also shows excellent durability for more than 50 h of continuous operation, even at 100 mA cm−2 . Furthermore, density functional theory calculations suggest that the unintentionally in situ doped Ni during the reduction reaction possibly improves the OER performance of the rFNCO catalyst shifting d-band centers of both Fe and Ni active sites.en_US
dc.description.sponsorshipThe authors acknowledge the financial support from the National Research Foundation (NRF) of Korea (grant nos. 2018R1D1A1B07049046, 2021R1A2B5B01001796, and 2021R1A4A5031805).en_US
dc.language.isoenen_US
dc.publisherAMER CHEMICAL SOCen_US
dc.subjectbilayered Fe3O4/NiCo2O4, chemical reductionen_US
dc.subjectmetal interdiffusionen_US
dc.subjectelectrocatalytic water splittingen_US
dc.subjectoxygen evolution reaction (OER)en_US
dc.titleExperimental and Theoretical Insights into the Borohydride-Based Reduction-Induced Metal Interdiffusion in Fe-Oxide@NiCo2O4 for Enhanced Oxygen Evolutionen_US
dc.typeArticleen_US
dc.relation.no45-
dc.relation.volume13-
dc.identifier.doi10.1021/acsami.1c13694-
dc.relation.page53725-53735-
dc.relation.journalACS APPLIED MATERIALS & INTERFACES-
dc.contributor.googleauthorJo, Yongcheol-
dc.contributor.googleauthorCho, Sangeun-
dc.contributor.googleauthorSeo, Jiwoo-
dc.contributor.googleauthorAhmed, Abu Talha Aqueel-
dc.contributor.googleauthorLee, Chi Ho-
dc.contributor.googleauthorSeok, Jun Ho-
dc.contributor.googleauthorHou, Bo-
dc.contributor.googleauthorPatil, Supriya A.-
dc.contributor.googleauthorPark, Youngsin-
dc.contributor.googleauthorShrestha, Nabeen K.-
dc.contributor.googleauthorLee, Sang Uck-
dc.contributor.googleauthorKim, Hyungsang-
dc.contributor.googleauthorIm, Hyunsik-
dc.relation.code2021009211-
dc.sector.campusE-
dc.sector.daehakCOLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY[E]-
dc.sector.departmentDEPARTMENT OF CHEMICAL AND MOLECULAR ENGINEERING-
dc.identifier.pidsulee-


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE