77 0

Regularization of multidimensional sparse seismic data using Delaunay tessellation

Title
Regularization of multidimensional sparse seismic data using Delaunay tessellation
Author
설순지
Keywords
Trace regularization; Delaunay tessellation; barycentric coordinate; irregular sparse seismic data
Issue Date
2020-03
Publisher
ELSEVIER
Citation
JOURNAL OF APPLIED GEOPHYSICS, v. 174, article no. 103877
Abstract
Due to geographical or economic limitations, permanent earthquake seismometers or receiver stations in seismic surveys are often deployed irregularly. The data acquired at such irregularly distributed stations hinders the use of most geophysical data-processing tools, which have been developed based on an array of receiver stations at constant intervals. Therefore, to obtain better results, pre-processing trace regularization is essential before applying geophysical data-processing techniques. In two-dimensional cases, regularization can be performed using a method that finds the proper basis, such as matching pursuit interpolation. Due to computational time costs, however, it is difficult to extend its application to three or more dimensions. Higher-dimensional problems can use linear interpolation at the desired position using several traces from neighbouring stations. However, this requires additional steps for finding the proper neighbouring stations, increasing the time cost. This study proposes an efficient linear interpolation algorithm for higher-dimensional regularization using Delaunay tessellation, which has been used for various purposes, such as surface reconstruction and determining the nearest neighbourhood in computational geometry. Delaunay tessellation is a tiling method that numerically stable creates simplices whose vertices are arbitrary points distributed in multidimensional space. After tessellation, the points inside the simplex are transformed into barycentric coordinates, and the data are made by piece-wise linear combination of traces placed in vertices using the coordinates as weighting. In this way, irregular and sparse geophysical data are efficiently regularized in three-dimensional space while minimizing the additional computational time cost. Numerical results show that the overall artifact was reduced compared to the previous algorithm, and especially the aliasing on the f-k spectrum was clearly reduced. (C) 2019 Elsevier B.V. All rights reserved.
URI
https://www.sciencedirect.com/science/article/pii/S0926985119300308?via%3Dihubhttps://repository.hanyang.ac.kr/handle/20.500.11754/169119
ISSN
0926-9851; 1879-1859
DOI
10.1016/j.jappgeo.2019.103877
Appears in Collections:
RESEARCH INSTITUTE[S](부설연구소) > ETC
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE