548 0

Full metadata record

DC FieldValueLanguage
dc.contributor.advisor신흥수-
dc.contributor.author변하연-
dc.date.accessioned2022-02-22T02:08:52Z-
dc.date.available2022-02-22T02:08:52Z-
dc.date.issued2022. 2-
dc.identifier.urihttp://hanyang.dcollection.net/common/orgView/200000590015en_US
dc.identifier.urihttps://repository.hanyang.ac.kr/handle/20.500.11754/168206-
dc.description.abstract생체 내의 골 조직은 주변의 다양한 종류의 조직 및 혈관과 밀접하게 상호작용을 하며 복잡한 구조를 유지하고 있다. 최근 골 관련 질환의 증가로 조직공학적 치료법의 수요가 증가함에 따라, 다양한 세포 및 생체재료를 이용한 연구들이 진행되고 있으며, 더 나은 치료효과를 위해 질환부위의 미세환경을 조절하는 기술 및 실제 기관과 유사한 모델을 통해 생물학적인 메커니즘을 분석하는 기술들이 연구되고 있다. 이러한 요구를 충족시키기 위해 기관과 유사한 생물학적 기능을 보이는 오가노이드 및 이들의 융합체인 어셈블로이드와 같은 기술들이 개발되었지만, 지지체를 이용한 방식에서 오는 실제 기관과의 세포인식의 차이점 및 미세환경 모사의 한계점은 여전히 극복해야 할 숙제로 남아있다. 본 연구에서는 세포외 기질과 유사한 합성 나노 섬유 조각의 제작 및 표면 개질을 통해 기능성 물질을 나노 섬유 조각에 담지 할 수 있었고, 이를 세포와 융합하여 기능성을 갖는 세포 구상체 (스페로이드)를 형성할 수 있었다. 이러한 과정을 통해 표면개질된 물질들이 가지고 있는 자기구동성, 항산화효과, 골분화 효과 와 같은 생물학적인 기능들을 스페로이드 내부의 세포들로 전달할 수 있었다. 기관과 유사한 세포의 배열을 위해서는 원격제어 가능한 자성나노입자 담지 나노 섬유 조각을 이용하여 스페로이드를 제작하고, 자기구동을 통해 링, 라멜라, 혈관, 오스테온과 같은 복잡한 구조들을 모사할 수 있었다. 이 인공조직들은 나노 섬유의 함량 및 길이 조절을 통해 장기간 배양에도 구조를 유지할 수 있었다. 또한, 스페로이드의 기능성을 조절하기 위해서는 폴리페놀과 미네랄을 이용해 나노 섬유 표면을 개질 한 후 세포와 융합하여 스페로이드를 제조하였으며, 이 스페로이드는 폴리페놀의 기능성인 항산화 효과뿐만 아니라 미네랄의 골분화 효과도 가지는 것을 확인하였다. 마지막으로 혈관내피세포 및 줄기세포를 이용하여 골 및 혈관 모듈을 제작할 수 있었고, 자기구동을 이용하여 실제 조직과 유사한 형태의 혈관 및 골-혈관 어셈블로이드를 제작하였다. 이렇게 형성된 어셈블로이드는 실제 기관과 유사한 구조적, 생물학적인 특성을 보였다. 결론적으로, 본 연구에서 진행된 원격제어능 및 자발적 분화 기능과 같은 다기능성을 가지고 있는 어셈블로이드 제작 기술은 조직공학 분야에서 실제 기관과 더 유사한 구조를 형성할 수 있는 기술로 기관 모델링, 세포치료제와 같은 다양한 생체의학 분야에서 응용될 수 있을 것으로 사료된다. | Bone tissue is composed of bone-specific cells surrounded by a mineralized matrix and complexly interacts with various tissues and organs, such as neighboring blood vessels and cartilage. To this end, understanding of bone microenvironment is being highly considered in bone tissue engineering and various strategies to investigate cellular crosstalk in organs are being developed. Among them, assembloid which is an assembly of spheroids that have biological features similar to that of the organ have recently been applied to various applications such as organ models and biomedical engineering. For better recapitulation of organs, engineering of spheroids, which are building blocks of assembloids, is currently being considered using functional biomaterials. Furthermore, the need to understand interactions between cells in organs, such as bone-vessels crosstalk, is emerging in bone tissue engineering. Herein, I first developed a spheroid fabrication system using extracellular matrix (ECM)-like synthetic nanofibers whose surface was modified with magnetic nanoparticles (MNP) to magnetize and control contraction of the spheroids. The magnetized synthetic fibers (MSFs) were successfully fabricated with controlled amount of MNPs and appropriate amount of MSFs showed no cytotoxicity (>92% of viability) in the spheroids. Furthermore, spheroids with 10 µg of MSF showed minor fusion compared to spheroids with less fibers which demonstrated controlled fusion assisted by the MSFs. I further investigated the fusion acceleration effect of external magnetic stimulation by fusing spheroids under different magnetic forces. Then, I successfully fabricated ring and lamellar structures using the MSF spheroids via magnetic assembly which showed intimate spheroid-spheroid interaction, cell proliferation and maintained initial spatial arrangement without contraction. In recapitulating an organ, not only structural control but also functional control is important for spheroid engineering. In here, I developed method to fabricate spheroids using functional nanofibers which have multifunctionality including osteoinductivity and antioxidation. I prepared the fibers via one-step mineralization using epigallocatechin gallate (EGCG) and 10X simulated body fluids (10X SBF). The EGCG-mineral fibers (EMFs) showed ROS scavenging capacity with bone-like apatite minerals. The spheroids with EMFs showed higher DNA contents than cell only spheroids (>130%) and stable structure. Survival of cells in the spheroids under severe ROS condition was increased in the presence of EMFs. Furthermore, the EMF spheroids were spontaneously differentiated into osteogenic lineage even cultured in growth medium. Lastly, In vivo transplantation of EMF spheroids into mouse calvarial defect showed dramatic enhancement of bone formation (48.390±9.24% in new bone area) than other control groups. Finally, I further modified synthetic nanofibers by incorporating MNPs inside synthetic fibers (MFs) and the surface of the fibers were successfully modified with antioxidant (polydopamine; PD) or osteoinductive factor (minerals). First, the PD coated fibers (PMFs) fabricated with controlled amount of PD and length were incorporated with fibroblasts to form spheroids. Then, the multi-part structure was fabricated using magnetic assembly of heterotypic spheroids and showed spatial functional control including antioxidation or angiogenesis. Next, vascular assembloids were fabricated using endothelial and epithelial spheroids. To fabricate osteovascular assembloids, I fabricated bone modules by using mineralized MF (mMF) via mineralization process with EGCG and modified 10X SBF solution. The spheroids incorporated with mMFs showed high viability and controlled magnetism. In addition, mMF spheroids showed enhanced osteogenic differentiation as well as vascular maturation into H type vessel. Finally, 2D and 3D osteovascular assembloids were fabricated via magnetic assembly of bone and vessel modules, and showed greater expression of osteovascular markers and mineral formation than assembloids without minerals. Taken together, I proposed advanced approaches to fabricate osteovascular assembloids with controlled arrangement, structure and lineage using multi-functional nanofibers. These systems will pave the way for various biofabrication applications, such as imitating in vivo organs or manufacturing artificial organs for biomedical purposes.-
dc.publisher한양대학교-
dc.titleBiofabrication of bone assembloids by self-assembly of spheroids engineered with functionalized synthetic fibers-
dc.typeTheses-
dc.contributor.googleauthorHayeon Byun-
dc.contributor.alternativeauthor변하연-
dc.sector.campusS-
dc.sector.daehak대학원-
dc.sector.department생명공학과-
dc.description.degreeDoctor-
Appears in Collections:
GRADUATE SCHOOL[S](대학원) > BIOENGINEERING(생명공학과) > Theses (Ph.D.)
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE