55 0

HF-SPHR: Hybrid Features for Sustainable Physical Healthcare Pattern Recognition Using Deep Belief Networks

Title
HF-SPHR: Hybrid Features for Sustainable Physical Healthcare Pattern Recognition Using Deep Belief Networks
Author
김기범
Keywords
deep belief networks; hybrid-features; restricted Boltzmann machines; sustainable physical healthcare pattern recognition; wearable sensors system
Issue Date
2021-02
Publisher
MDPI
Citation
SUSTAINABILITY, v. 13, Issue. 4, Article no. 1699, 27pp
Abstract
The daily life-log routines of elderly individuals are susceptible to numerous complications in their physical healthcare patterns. Some of these complications can cause injuries, followed by extensive and expensive recovery stages. It is important to identify physical healthcare patterns that can describe and convey the exact state of an individual’s physical health while they perform their daily life activities. In this paper, we propose a novel Sustainable Physical Healthcare Pattern Recognition (SPHR) approach using a hybrid features model that is capable of distinguishing multiple physical activities based on a multiple wearable sensors system. Initially, we acquired raw data from well-known datasets, i.e., mobile health and human gait databases comprised of multiple human activities. The proposed strategy includes data pre-processing, hybrid feature detection, and feature-to-feature fusion and reduction, followed by codebook generation and classification, which can recognize sustainable physical healthcare patterns. Feature-to-feature fusion unites the cues from all of the sensors, and Gaussian mixture models are used for the codebook generation. For the classification, we recommend deep belief networks with restricted Boltzmann machines for five hidden layers. Finally, the results are compared with state-of-the-art techniques in order to demonstrate significant improvements in accuracy for physical healthcare pattern recognition. The experiments show that the proposed architecture attained improved accuracy rates for both datasets, and that it represents a significant sustainable physical healthcare pattern recognition (SPHR) approach. The anticipated system has potential for use in human–machine interaction domains such as continuous movement recognition, pattern-based surveillance, mobility assistance, and robot control systems.
URI
https://www.mdpi.com/2071-1050/13/4/1699https://repository.hanyang.ac.kr/handle/20.500.11754/166994
ISSN
2071-1050
DOI
10.3390/su13041699
Appears in Collections:
ETC[S] > 연구정보
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE