308 0

Full metadata record

DC FieldValueLanguage
dc.contributor.author이상욱-
dc.date.accessioned2021-12-23T02:37:39Z-
dc.date.available2021-12-23T02:37:39Z-
dc.date.issued2021-03-
dc.identifier.citationAPPLIED SURFACE SCIENCE, v. 541, Article no. 148417, 10ppen_US
dc.identifier.issn0169-4332-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0169433220331743-
dc.identifier.urihttps://repository.hanyang.ac.kr/handle/20.500.11754/166926-
dc.description.abstractFirst-principles density functional theory (DFT) computations are carried out to assess the potential application of a monolayer Silicon carbide (SiC) with the presence of topological and point defects. Results show that the unstable binding of pristine SiC makes it a poor candidate for the anode material. However, the introduction of vacancy and Stone-Wales type topological defect in SiC possesses a stable Li binding property. Besides, all the defective configuration showed higher electrical conductivity, superior mechanical robustness and stable formation energy. We also observed a structural reorientation from point to topological defect with a 5-8-5 ring formation in C and Si-C bi-vacancy and a Li-mediated phenomenon in the case of Si bi-vacancy. All the configurations under consideration exhibited low open-circuit voltage (0.1 V), a low Li diffusion barrier (~0.77 eV), and a fairly high specific capacity (501 mAh/g for Stone-Wales) compared to the conventional graphite anode. Besides, the ab initio molecular dynamics calculations confirmed the thermal stability and structural integrity of the defective SiC. Based on these findings, the present study suggests that SiC with a Stone-Wales defect can be a forthcoming candidate for the anode of LIBs.en_US
dc.language.isoen_USen_US
dc.publisherELSEVIERen_US
dc.subject2D-SiCen_US
dc.subjectDensity functional theoryen_US
dc.subjectElectronic propertiesen_US
dc.subjectLi-ion batteryen_US
dc.subjectBinding energyen_US
dc.subjectDiffusion barrieren_US
dc.subjectSpecific capacityen_US
dc.titleMechanically robust, self-healing graphene like defective SiC: A prospective anode of Li-ion batteriesen_US
dc.typeArticleen_US
dc.relation.volume541-
dc.identifier.doi10.1016/j.apsusc.2020.148417-
dc.relation.page148417-148426-
dc.relation.journalAPPLIED SURFACE SCIENCE-
dc.contributor.googleauthorManju, M.S.-
dc.contributor.googleauthorThomas, Siby-
dc.contributor.googleauthorKulangara Madam, Ajith-
dc.contributor.googleauthorLee, Sang Uck-
dc.relation.code2021006870-
dc.sector.campusE-
dc.sector.daehakCOLLEGE OF SCIENCE AND CONVERGENCE TECHNOLOGY[E]-
dc.sector.departmentDEPARTMENT OF CHEMICAL AND MOLECULAR ENGINEERING-
dc.identifier.pidsulee-


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE