73 0

Full metadata record

DC FieldValueLanguage
dc.contributor.author선양국-
dc.date.accessioned2021-11-22T01:55:54Z-
dc.date.available2021-11-22T01:55:54Z-
dc.date.issued2020-05-
dc.identifier.citationNANO LETTERS, v. 20, no. 5, page. 3247-3254en_US
dc.identifier.issn1530-6992-
dc.identifier.issn1530-6984-
dc.identifier.urihttps://pubs.acs.org/doi/10.1021/acs.nanolett.9b05355-
dc.identifier.urihttps://repository.hanyang.ac.kr/handle/20.500.11754/166386-
dc.description.abstractSodium-ion batteries are promising alternatives for lithium-ion batteries due to their lower cost caused by global sodium availability. However, the low Coulombic efficiency (CE) of the sodium metal plating/stripping process represents a serious issue for the Na anode, which hinders achieving a higher energy density. Herein, we report that the Na+ solvation structure, particularly the type and location of the anions, plays a critical role in determining the Na anode performance. We show that the low CE results from anion-mediated corrosion, which can be tackled readily through tuning the anion interaction at the electrolyte/anode interface. Our strategy thus enables fast-charging Na-ion and Na-S batteries with a remarkable cycle life. The presented insights differ from the prevailing interpretation that the failure mechanism mostly results from sodium dendrite growth and/or solid electrolyte interphase formation. Our anionic model introduces a new guideline for improving the electrolytes for metal-ion batteries with a greater energy density.en_US
dc.description.sponsorshipThis work is supported by the National Natural Science Foundation of China (21978281 and 21975250) and the National Key R&D Program of China (SQ2017YFE9128100). The authors also thank the Independent Research Project of the State Key Laboratory of Rare Earth Resources Utilization (110005R086), Changchun Institute of Applied Chemistry, Chinese Academy of Sciences. The research was also partially supported by King Abdullah University of Science and Technology (KAUST) and Hanyang University.en_US
dc.language.isoenen_US
dc.publisherAMER CHEMICAL SOCen_US
dc.subjectsodium batteryen_US
dc.subjectelectrolyteen_US
dc.subjectsolid electrolyte interphaseen_US
dc.subjectanodeen_US
dc.subjectfast chargingen_US
dc.titleEngineering Sodium-Ion Solvation Structure to Stabilize Sodium Anodes: Universal Strategy for Fast-Charging and Safer Sodium-Ion Batteriesen_US
dc.typeArticleen_US
dc.relation.no5-
dc.relation.volume20-
dc.identifier.doi10.1021/acs.nanolett.9b05355-
dc.relation.page3247-3254-
dc.relation.journalNANO LETTERS-
dc.contributor.googleauthorZhou, Lin-
dc.contributor.googleauthorCao, Zhen-
dc.contributor.googleauthorZhang, Jiao-
dc.contributor.googleauthorSun, Qujiang-
dc.contributor.googleauthorWu, Yingqiang-
dc.contributor.googleauthorWahyudi, Wandi-
dc.contributor.googleauthorHwang, Jang-Yeon-
dc.contributor.googleauthorWang, Limin-
dc.contributor.googleauthorCavallo, Luigi-
dc.contributor.googleauthorSun, Yang-Kook-
dc.relation.code2020053284-
dc.sector.campusS-
dc.sector.daehakCOLLEGE OF ENGINEERING[S]-
dc.sector.departmentDEPARTMENT OF ENERGY ENGINEERING-
dc.identifier.pidyksun-
dc.identifier.orcidhttps://orcid.org/0000-0002-0117-0170-
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > ENERGY ENGINEERING(에너지공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE