72 0

Unprecedentedly Low CO2 Transport through Vertically Aligned, Conical Silicon Nanotube Membranes

Title
Unprecedentedly Low CO2 Transport through Vertically Aligned, Conical Silicon Nanotube Membranes
Author
박호범
Keywords
Silicone nanotube membrane; Gas permeation; Nanopore; H2/CO2 separation
Issue Date
2020-05
Publisher
AMER CHEMICAL SOC
Citation
NANO LETTERS, v. 20, no. 7, page. 4754-4760
Abstract
Nanotube membranes could show significantly enhanced permeance and selectivity for gas separations. Up until now, studies have primarily focused on applying carbon nanotubes to membranes to achieve ultrafast mass transport. Here, we report the first preparation of silicon nanotube (SiNT) membranes via a template-assisted method and investigate the gas transport behavior through these SiNT membranes using single- and mixed-gas permeation experiments. The SiNT membranes consist of conical cylinder-shaped nanotubes vertically aligned on a porous silicon wafer substrate. The diameter of the SiNT pore mouths are 10 and 30 nm, and the average inner diameter of the tube body is 80 nm. Interestingly, among the gases tested, we found an unprecedentedly low CO2 permeance through the SiNT membranes in single-gas permeation experiments, exceeding the theoretical Knudsen selectivity toward small gases/CO2 separation. This behavior was caused by the reduction of CO2 permeability through the blocking effect of CO2 adsorbed in the narrow pore channels of the SiNT cone regions, indicating that CO2 molecules have a high affinity to the native silicon oxide layer (similar to 2 nm) that is formed on the inner walls of SiNTs. SiNT membranes also exhibited enhanced gas permeance and water flux as compared to classic theoretical models and, as such, may prove useful as a new type of nanotube material for use in membrane applications.
URI
https://pubs.acs.org/doi/10.1021/acs.nanolett.0c00265https://repository.hanyang.ac.kr/handle/20.500.11754/166217
ISSN
1530-6984; 1530-6992
DOI
10.1021/acs.nanolett.0c00265
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > ENERGY ENGINEERING(에너지공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE