83 0

Measuring surface uniformity in chemical mechanical polishing

Title
Measuring surface uniformity in chemical mechanical polishing
Author
강창욱
Issue Date
2009-09
Publisher
ISAAT2009
Citation
Advanced Materials Research, v. 76-78, page. 459-464
Abstract
Chemical mechanical polishing (CMP) is a technique used in semiconductor fabrication for planarizing the top surface of an in-process semiconductor wafer. Especially, Post-CMP thickness variations are known to have a severe impact on the stability of downstream processes and ultimately on device yield. Hence understanding how to quantify and characterize this non-uniformity is significant step towards statistical process control to achieve higher quality and enhanced productivity. The main reason is that the non-uniformed interface between the wafer and the machine-pad adversely affects the polishing performance and ultimate surface uniformity. The purpose of this paper is to suggest a new measure that estimates the uniformity of wafer surface considering the difference of the amount of abrasion between the center and the edge. This new measure which is called the Coefficient of Uniformity is defined as the following ratio: Geometric Mean (GM) / Arithmetic Mean (AM). This metric can be evaluated regionally to quantify the non-uniformity on the wafer surface from the center to the edge. Further simulations show that this new measure is insensitive to shift of the wafer center and sensitive to shift of the wafer edge. This trend indicates that this new measure is a very useful to test the non-uniformity of wafer after CMP polishing.
URI
https://www.scientific.net/AMR.76-78.459https://repository.hanyang.ac.kr/handle/20.500.11754/165975
DOI
10.4028/www.scientific.net/AMR.76-78.459
Appears in Collections:
COLLEGE OF ENGINEERING SCIENCES[E](공학대학) > INDUSTRIAL AND MANAGEMENT ENGINEERING(산업경영공학과) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE