422 0

Zero reduction luminescence of aqueous-phase alloy core/shell quantum dots via rapid ambient-condition ligand exchange

Title
Zero reduction luminescence of aqueous-phase alloy core/shell quantum dots via rapid ambient-condition ligand exchange
Author
임원빈
Keywords
Surface modification; Quantum dots; Ligand exchange; Photoluminescence; Quenching
Issue Date
2020-03
Publisher
ACADEMIC PRESS INC ELSEVIER SCIENCE
Citation
JOURNAL OF COLLOID AND INTERFACE SCIENCE, v. 564, page. 88-98
Abstract
Quantum dots (QDs) have been widely studied as promising materials for various applications because of their outstanding photoluminescence (PL). Although ligand exchange methods for QDs have been developed over two decades, the PL quantum yield (QY) of aqueous phase QDs is still lower than that of their organic phase and the mechanism of quenching has not been clearly understood. In this study, we demonstrate for the first time that 3-mercaptopropionic-capped CdZnSeS/ZnS core/shell QDs obtained via ligand exchange in a ternary solvent system containing chloroform/water/dimethyl sulfoxide can enable the fast phase transfer and zero reduction of PL under ambient condition. The new solvent system allows the ligand-exchanged QDs to exhibit enhanced QYs up to 8.1% of that of the organic-phase QDs. Based on both theoretical calculation and experiment, it was found that control over the physical/chemical perturbation between the organic/aqueous phases by choosing appropriate solvents for the ligand exchange process is very important to preserve the optical properties of QDs. We believe that our new technologies and theoretical knowledge offer opportunities for the future design and optimization of highly stable and highly luminescent aqueous-phase QDs for various applications.
URI
https://www.sciencedirect.com/science/article/pii/S002197971931570X?via%3Dihubhttps://repository.hanyang.ac.kr/handle/20.500.11754/162184
ISSN
0021-9797; 1095-7103
DOI
10.1016/j.jcis.2019.12.104
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > MATERIALS SCIENCE AND ENGINEERING(신소재공학부) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE