254 208

Full metadata record

DC FieldValueLanguage
dc.contributor.author정경영-
dc.date.accessioned2020-11-13T00:58:47Z-
dc.date.available2020-11-13T00:58:47Z-
dc.date.issued2019-11-
dc.identifier.citationIEEE ACCESS, v. 7, Page. 160498-160505en_US
dc.identifier.issn2169-3536-
dc.identifier.urihttps://ieeexplore.ieee.org/document/8890686-
dc.identifier.urihttps://repository.hanyang.ac.kr/handle/20.500.11754/155493-
dc.description.abstractRecently, it has received a great deal of attention to analyze the electromagnetic wave problems in dispersive media by using the finite-difference time-domain (FDTD) method. Accordingly, it is of great importance to employ a proper dispersion model which can fit the frequency-dependent permittivity of a medium considered. The reported dispersion models include Debye, Drude, Lorentz, modified Lorentz, quadratic complex rational function, complex-conjugate pole-residue (CCPR) models. The CCPR dispersion model has advantage over other dispersion models in the fact that accurate CCPR dispersion parameters can be simply extracted by using the powerful and robust vector fitting tool which has been widely used in the circuit theory. However, the arithmetic operation of CCPR-based FDTD implementation is involved with complex-valued numbers and thus its numerical computation is not efficient. In this work, we propose an accurate and efficient FDTD simulation for complex dispersive media. In specific, an accurate CCPR dispersion model is simply obtained using the vector fitting tool and then the CCPR dispersion model is converted to the modified Lorentz dispersion model which leads to the arithmetic operation of only real-valued numbers in its FDTD implementation. Numerical examples are used to illustrate the accuracy and efficiency of our dispersive FDTD simulation.en_US
dc.description.sponsorshipThis work was supported by the Research Fund of Signal Intelligence Research Center, Supervised by Defense Acquisition Program Administration and Agency for Defense Development of Korea.en_US
dc.language.isoenen_US
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INCen_US
dc.subjectMathematical modelen_US
dc.subjectFinite difference methodsen_US
dc.subjectTime-domain analysisen_US
dc.subjectDispersionen_US
dc.subjectComputational modelingen_US
dc.subjectMediaen_US
dc.subjectNumerical modelsen_US
dc.subjectDispersion modelen_US
dc.subjectdispersive mediaen_US
dc.subjectfinite-difference time-domain (FDTD) methoden_US
dc.subjecthuman tissueen_US
dc.subjectplasmonicsen_US
dc.titleAccurate and Efficient Finite-Difference Time-Domain Simulation Compared With CCPR Model for Complex Dispersive Mediaen_US
dc.typeArticleen_US
dc.relation.volume7-
dc.identifier.doi10.1109/ACCESS.2019.2951173-
dc.relation.page160498-160505-
dc.relation.journalIEEE ACCESS-
dc.contributor.googleauthorChoi, Hongjin-
dc.contributor.googleauthorKim, Yeon-Hwa-
dc.contributor.googleauthorBaek, Jae-Woo-
dc.contributor.googleauthorJung, Kyung-Young-
dc.relation.code2019036307-
dc.sector.campusS-
dc.sector.daehakCOLLEGE OF ENGINEERING[S]-
dc.sector.departmentDEPARTMENT OF ELECTRONIC ENGINEERING-
dc.identifier.pidkyjung3-
dc.identifier.orcidhttps://orcid.org/0000-0002-7960-3650-


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE