123 0

Biocompatible Carbon Nanotube-Based Hybrid Microfiber for Implantable Electrochemical Actuator and Flexible Electronic Applications

Title
Biocompatible Carbon Nanotube-Based Hybrid Microfiber for Implantable Electrochemical Actuator and Flexible Electronic Applications
Author
최선진
Keywords
hyaluronic acid; single-walled carbon nanotubes; conductive fiber; electrochemical microactuator; biocompatibility
Issue Date
2019-06
Publisher
AMER CHEMICAL SOC
Citation
ACS APPLIED MATERIALS & INTERFACES, v. 11, NO 23, Page. 20615-20627
Abstract
Biocompatible, electrically conductive microfibers with superior mechanical properties have received a great attention due to their potential applications in various biomedical applications such as implantable medical devices, biosensors, artificial muscles, and microactuators. Here, we developed an electrically conductive and mechanically stable carbon nanotube-based microactuator with a low degradability that makes it usable for an implantable device in the body or biological environments. The microfiber was composed of hyaluronic acid (HA) hydrogel and single-wall carbon nanotubes (SWCNTs) (HA/SWCNT). HA hydrogel acts as biosurfactant and ion-conducting binder to improve the dispersion of SWCNTs resulting in enhanced electrical and mechanical properties of the hybrid microfiber. In addition, HA was crosslinked to prevent the leaking of the nanotubes from the composite. Crosslinking of HA hydrogel significantly enhances Young's modulus, the failure strain, the toughness, the stability of the electrical conductivity, and the resistance to biodegradation and creep of hybrid microfibers. The obtained crosslinked HA/SWCNT hybrid microfibers show an excellent capacitance and actuation behavior under mechanical loading with a low potential of +/- 1 V in a biological environment. Furthermore, the HA/SWCNT microfibers exhibit an excellent in vitro viability. Finally, the biocompatibility is shown through the resolution of an early inflammatory response in less than 3 weeks after the implantation of the microfibers in the subcutaneous tissue of mice.
URI
https://pubs.acs.org/doi/10.1021/acsami.9b02927https://repository.hanyang.ac.kr/handle/20.500.11754/151209
ISSN
1944-8244; 1944-8252
DOI
10.1021/acsami.9b02927
Appears in Collections:
COLLEGE OF ENGINEERING[S](공과대학) > MATERIALS SCIENCE AND ENGINEERING(신소재공학부) > Articles
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE