335 0

본드 그래프를 이용한 유연힌지 기반 마이크로 매니퓰레이터의 동적 모델링과 제어

Title
본드 그래프를 이용한 유연힌지 기반 마이크로 매니퓰레이터의 동적 모델링과 제어
Other Titles
Dynamic Modeling and Control of Flexure-Based Micromanipulators Using Bond Graph
Author
왕위준
Alternative Author(s)
Wang, Weijun
Advisor(s)
한창수
Issue Date
2012-08
Publisher
한양대학교
Degree
Doctor
Abstract
집적회로나 MEMS 제작공정, 초고속 마이크로 매니퓰레이터 등에 확대 적용됨에 따라, 초고속 초정밀 위치결정 시스템의 스트로크, 속도, 가속도, 정확도 등의 성능에 있어 높은 사양이 요구된다. 앞서 말한 성능을 달성하기 위해 매크로-마이크로 매니퓰레이터 – 큰 스트로크를 갖는 스테이지와, 높은 정밀도를 갖는 스테이지가 결합된 형태 – 가 매니퓰레이터의 기능을 향상시키기 위한 방법으로 제시되었다. 게다가 유연 힌지 메커니즘을 적용하여 마찰없는 정밀 모션을 구현하여 정적 동적 요구조건을 충족시켰다. 유연 힌지 기반의 메커니즘은 종래의 강체 메커니즘과 다르다. 유연 요소는 전통적인 기계 요소가 갖는 단점을 없앨 수 있기 때문에, 이를 대체할 수 있다. 유연 힌지는 소재의 굴성을 억제하기 보다는 오히려 적극적으로 이용한다. 이 요소는 마찰, 백래시, 마모 따위를 없앤다. 이러한 정밀성은 수많은 마이크로, 나노, 바이오 응용과학에서 중요하다. 그러나 그놈이 갖는 불확실한 운동 때문에 정확한 모델을 세우는 것이 중요하지만 그 일이 그리 만만치 않다. 유연 요소의 동적 해석에 있어 에너지 이론에 바탕을 둔 라그랑주 방정식과 해밀턴의 방정식이 사용되었다. 본드 그래프 이론은 물리학과 공학 시스템의 모델을 세우는 데 매우 체계적인 방법이다. 이 방법은 핵심 물리 개념인 에너지에 바탕을 두고 있어 다양한 형태의 시스템에 대해 유사하게 접근할 수 있는 장점이 있다. 이러한 우수성 덕에, 본드 그래프는 복합 영역 시스템에 적합하다. 이 연구의 목적은 유연 힌지 기반의 마이크로 매니퓰레이터의 동적 모델링을 본드 그래프를 이용해서 수립하는 것이다. 이 논문은 이 영역의 연구를 수행해서, 구동기와 유연 요소에 대해 공히 적용할 수 있는 모델링 기법을 수립하고, 수학적 해석의 근거를 제시한다. 최종적으로 이를 통해 매크로/마이크로 매니퓰레이터의 상태 방정식을 도출한다. 이 절차에 있어 넘어야 할 큰 산 중에 하나는 본드 그래프 접근법으로 유연 요소를 모델링하는 것이다. 유연 요소의 적용 분야에 따른 자유도를 감안하여, 다중-필드 본드 그래프를 유도하여, 3차원 공간에서의 유연 요소를 해석하였다. 이는 일반 본드 그래프 보다 훨씬 효율적이다.|With the application of high-speed/high-precision positioning system extending to IC/MEMS manufacturing, high speed micromanipulators and so on, there are great demand of the system performance with stroke, speed, acceleration and accuracy. In order to achieve the above mentioned performance, a macro/micro manipulator system, consisting of a large (coarse) stage carrying a small (fine) high performance stage, is proposed as a means of enhancing the functionality of a manipulator. Also some flexure elements are used to frictionless precision motion that are designed to meet the static and dynamic requiements. Flexure-based mechanism is different with the rigid-body mechanism. Flexible elements offer an alternative to traditional mechanical elements that alleviates many of their disadvantages. Flexures utilize the inherent compliance of a material rather than restrain such deformation. These elements eliminate the presence of friction, backlash, and wear. Such accuracy is important in many micro-, nano-, and bio-applications. However, uncertain motion of flexible elements make it difficult to model. For dynamic analysis of flexible elements, Lagrange’s dynamics equation and Hamilton canonical equation which based on the energy equivalent theory, are used to analyze. Bond graph theory is a very systematic method for the modeling of systems in physics and engineering. It is an advantage that the method is based on a central physical concept, that is energy, and that the same methodology is used for different types of systems. Because of it excellent features, it is suitable to model the multi-field systems. Flexure-based micromanipulator system consists of several different actuators and some flexure elements, which is a mechanical-electrical system. The objective of the research presented in this document is to bulid the dynamic model for the flexure-based micromanipulators by using bond graph method. This document carried out research in these areas, such as to build the common bond graph modeling of actuator and flexible elements which based on the mathematical analysis, to obtain state space equation via bond graph modeling, macro/micro control strategies. The bottleneck is to model the flexible element by using bond graph approach. According to degree of freedom of the flexible element in different application, multi-field bond graph is derived to solve the flexible element at the three-dimensional aplication, which is more efficient than the ordinary bond graph.; With the application of high-speed/high-precision positioning system extending to IC/MEMS manufacturing, high speed micromanipulators and so on, there are great demand of the system performance with stroke, speed, acceleration and accuracy. In order to achieve the above mentioned performance, a macro/micro manipulator system, consisting of a large (coarse) stage carrying a small (fine) high performance stage, is proposed as a means of enhancing the functionality of a manipulator. Also some flexure elements are used to frictionless precision motion that are designed to meet the static and dynamic requiements. Flexure-based mechanism is different with the rigid-body mechanism. Flexible elements offer an alternative to traditional mechanical elements that alleviates many of their disadvantages. Flexures utilize the inherent compliance of a material rather than restrain such deformation. These elements eliminate the presence of friction, backlash, and wear. Such accuracy is important in many micro-, nano-, and bio-applications. However, uncertain motion of flexible elements make it difficult to model. For dynamic analysis of flexible elements, Lagrange’s dynamics equation and Hamilton canonical equation which based on the energy equivalent theory, are used to analyze. Bond graph theory is a very systematic method for the modeling of systems in physics and engineering. It is an advantage that the method is based on a central physical concept, that is energy, and that the same methodology is used for different types of systems. Because of it excellent features, it is suitable to model the multi-field systems. Flexure-based micromanipulator system consists of several different actuators and some flexure elements, which is a mechanical-electrical system. The objective of the research presented in this document is to bulid the dynamic model for the flexure-based micromanipulators by using bond graph method. This document carried out research in these areas, such as to build the common bond graph modeling of actuator and flexible elements which based on the mathematical analysis, to obtain state space equation via bond graph modeling, macro/micro control strategies. The bottleneck is to model the flexible element by using bond graph approach. According to degree of freedom of the flexible element in different application, multi-field bond graph is derived to solve the flexible element at the three-dimensional aplication, which is more efficient than the ordinary bond graph.
URI
https://repository.hanyang.ac.kr/handle/20.500.11754/136366http://hanyang.dcollection.net/common/orgView/200000420239
Appears in Collections:
GRADUATE SCHOOL[S](대학원) > MECHATRONICS ENGINEERING(메카트로닉스공학과) > Theses (Ph.D.)
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML


qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE